Skip to main content

Artificial sun sets new record, running at 100 million degrees C for 20 seconds

The Korea Superconducting Tokamak Advanced Research (KSTAR)
The Korea Superconducting Tokamak Advanced Research (KSTAR) National Research Council of Science & Technology

An artificial sun built in Korea has set a new record for the longest operation, maintaining a temperature of over 100 million degrees Celsius for 20 seconds.

The Korea Superconducting Tokamak Advanced Research (KSTAR), technically known as a “superconducting nuclear fusion research device,” is a device that recreates fusion similar to that which occurs in a star like our sun, so that magnetic fusion energy can be studied. The idea is that fusion could be used as a power source and contained safely using magnetic fields.

The new period of 20 seconds of operation at full temperature is a step up from the previous achievement of KSTAR of running for 8 seconds in 2019, following its reaching of temperature for this first time in 2018.

The extremely high temperature of 100 million degrees is needed for hydrogen atoms to gain sufficient energy to overcome the electrical forces of repulsion between protons. This allows the atoms to fuse, which could create electricity in a process called thermonuclear fusion power. Such a source could be a sustainable alternative energy source that could reduce the world’s reliance on fossil fuels.

Director Si-Woo Yoon of the KSTAR Research Center at the KFE explained the achievement in a statement: “The technologies required for long operations of 100 million- plasma are the key to the realization of fusion energy, and the KSTAR’s success in maintaining the high-temperature plasma for 20 seconds will be an important turning point in the race for securing the technologies for the long high-performance plasma operation, a critical component of a commercial nuclear fusion reactor in the future.”

The latest advances were enabled by improving the performance of the Internal Transport Barrier (ITB) mode; a recently developed mode that allows plasma to be maintained for longer periods. “The success of the KSTAR experiment in the long, high-temperature operation by overcoming some drawbacks of the ITB modes brings us a step closer to the development of technologies for realization of nuclear fusion energy,” added Yong-Su Na, professor at the Department of Nuclear Engineering, SNU, who has been jointly conducting the research on the KSTAR plasma operation.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Virgin Orbit rocket company shuts down
Virgin Orbit rocket

Rocket company Virgin Orbit has officially shut down after it failed to find a buyer to save its satellite-launch business.

Virgin Orbit paused operations and furloughed all 750 of its workers in March as it tried to secure funding. It also started to sell off its assets, including the modified jet that launched its rockets to space, but it wasn’t enough to save the six-year-old project.

Read more
Hubble goes hunting for elusive medium-sized black holes
A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.

There's something odd about the black holes discovered to date. We've found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we've found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it's not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

Read more
Astronomers spot cyclones at Uranus’ pole for the first time
NASA scientists used microwave observations to spot the first polar cyclone on Uranus, seen here as a light-colored dot to the right of center in each image of the planet. The images use wavelength bands K, Ka, and Q, from left. To highlight cyclone features, a different color map was used for each.

Even at almost 2 billion miles away from the sun, Uranus is still affected by changing seasons and weather just like Earth. On Uranus, though, each season is an epic 21 years long because of its distance from the sun. That makes it an intriguing place to study weather conditions, and recent research by NASA has observed a polar cyclone there.

As the planet is tipped over on its side, its poles aren't always facing in the right direction to be seen from Earth. But since 2015, astronomers have been able to observe the poles, and to peer into the atmosphere to see what is happening there.

Read more