Skip to main content

Supergiant star Betelgeuse could be smaller and closer than we thought

The mystery of what’s happening to Betelgeuse, normally one of the brightest stars in the sky, continues. Since late last year, astronomers noticed that the star was dimming dramatically. Some fluctuation in brightness is normal with stars, but Betelgeuse dropped to just 36% of its brightness, which is very unusual.

Now, astronomers from the Australian National University (ANU) think they have solved the puzzle — they believe that Betelgeuse is smaller and closer to us than previously thought.

This interpretation differs from previous theories announced this summer. Astronomers using data from the Hubble Space Telescope thought that Betelgeuse was ejecting plasma which created a dust cloud around the star, blocking some of its light from view. Another theory posited was that the star was covered in sunspots caused by variations in temperature, which would explain the variations in brightness.

Red Supergiant Betelgeuse
An artist’s impression of the Red Supergiant Betelgeuse. Its surface is covered by large starspots, which reduce its brightness. MPIA graphics department

But the ANU researchers have data of their own to challenge these theories. There appear to have been two distinct dimming events which affected the star. The first event, they agree was due to a dust cloud. But the second event, they believe was related to the pulsations of the star.

The researchers used computer modeling to investigate the hydrodynamic and seismic properties of the star, and they found that pressure waves — “essentially, sound waves,” the researchers described them — caused the star’s pulsations.

This research also raised questions about the size of the star and its presumed distance from Earth. “The actual physical size of Betelgeuse has been a bit of a mystery — earlier studies suggested it could be bigger than the orbit of Jupiter,” co-author Dr László Molnár from the Konkoly Observatory in Budapest said in a statement. “Our results say Betelgeuse only extends out to two-thirds of that, with a radius 750 times the radius of the sun.”

And from this estimate of the star’s size, the researchers could figure out is distance, as Molnár explained: “Once we had the physical size of the star, we were able to determine the distance from Earth. Our results show it’s a mere 530 light-years from us — 25% closer than previously thought.”

Another implication of this research is about whether the star will go supernova. The dramatic dimming had led some researchers to posit that Betelgeuse could be approaching the end of its life and could explode in an epic supernova event. But the ANU researchers think that’s unlikely. “It’s burning helium in its core at the moment, which means it’s nowhere near exploding,” lead researcher Dr Meridith Joyce said in the statement. “We could be looking at around 100,000 years before an explosion happens.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Watery exoplanets could be more common than we thought
The surface of Jupiter's moon Europa, where a liquid ocean is thought to lurk beneath an icy crust.

When hunting for exoplanets that could potentially host life, one big factor that scientists consider in habitability is the presence of water. The presence of liquid water is required for almost all life as we know it, so when looking for other worlds which might host life, looking for water is a good place to start. Now, a new study suggests that exoplanets with water may be far more common than we previously thought, with many planets potentially being made up of as much as half water, half rock.

Researchers from the University of Chicago looked at a group of known exoplanets orbiting around M-dwarf stars, which are the most common type of stars in our galaxy. Dozens of these exoplanets have been discovered through two different methods: the transit method, where a planet passes in front of a star and causes a dip in its brightness, and the radial velocity method, where a planet's gravity causes a very slight change to a star's movements. The researchers combined information from both methods to learn more about the planets in question.

Read more
Hubble gets a peek at how stars could have formed in the early universe
Astronomers have been bemused to find young stars spiralling into the centre of a massive cluster of stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way. The outer arm of the spiral in this huge, oddly shaped stellar nursery — called NGC 346 — may be feeding star formation in a river-like motion of gas and stars. This is an efficient way to fuel star birth, researchers say.

With the early science results coming in from the James Webb Space Telescope we're learning more than ever before about the early universe. But it's not only Webb which is helping scientists to understand the universe when it was young -- as a recent release from the Hubble Space Telescope demonstrates, we also have a lot to learn from other tools too.

Hubble researchers recently shared this image of a cluster of stars in the Small Magellanic Cloud, a dwarf satellite galaxy of our Milky Way. This small galaxy has a different chemical composition than our galaxy and is therefore more like the galaxies found in the early universe, so studying it can help us learn about how stars were born when the universe was still young.

Read more
Intel Arc Alchemist may be a lot cheaper than we thought
Two Intel Arc GPUs running side by side.

Intel is now offering alternate prizes to the winners of its Xe-HPG Scavenger Hunt, and although this might seem completely unrelated, it actually gives us a clue about the pricing of Arc Alchemist GPUs.

The winners were given the chance to pick one of two Intel Alder Lake processors to act as a substitute for the promised Intel Arc prize. Examining the prices of these processors might be the key to figuring out just how much Intel Arc might cost when it finally arrives.

Read more