Skip to main content

Astronomers create most accurate map yet of all the matter in the universe

Of all the questions facing astronomers today, some of the biggest unknowns are about the stuff that makes up most of the universe. We know that the ordinary matter we see all around us makes up just 5% of all that exists, while the rest is made up of dark matter and dark energy. But because dark matter doesn’t interact with light, it is extremely hard to study — we have to infer its existence and position from looking at the way it interacts with the ordinary matter around it.

The Blanco Telescope dome at the Cerro Tololo Inter-American Observatory in Chile, where the Dark Energy Camera used for the recently completed Dark Energy Survey was housed.
The Victor M. Blanco Telescope dome at the Cerro Tololo Inter-American Observatory in Chile, where the Dark Energy Camera used for the recently completed Dark Energy Survey is housed. Reidar Hahn, Fermilab

Recent research is helping in this task by producing the most accurate map to date of how both matter and dark matter are spread across the universe. Astronomers collected information from two different telescopes, the Dark Energy Survey telescope and the South Pole Telescope, to make their map as precise as possible.

For both telescope data sets, the researchers used the phenomenon of gravitational lensing — in which a massive body like a star, galaxy, or galaxy cluster warps spacetime and acts like a magnifying glass — to detect both regular matter and dark matter.

By comparing maps of the sky from the Dark Energy Survey telescope (at left) with data from the South Pole Telescope and the Planck satellite (at right), the team could infer how the matter is distributed.
By comparing maps of the sky from the Dark Energy Survey telescope ( from left) with data from the South Pole Telescope and the Planck satellite, the team could infer how the matter is distributed. Yuuki Omori

The results brought some surprises, like the fact that matter is less clumpy than would be expected based on current models of how the universe formed. It shows that the matter is more evenly spread out that predicted. If other surveys find similar results, this could indicate that there is something missing from current theories on how the universe formed in the period immediately following the Big Bang.

“I think this exercise showed both the challenges and benefits of doing these kinds of analyses,” said one of the lead authors of the research, Chihway Chang of the University of Chicago, in a statement. “There’s a lot of new things you can do when you combine these different angles of looking at the universe.”

The research is published in three papers in the journal Physical Review D.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more
Astronomers discover Earth-sized exoplanet covered in volcanoes
Exoplanet LP 791-18 d, illustrated in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io.

Astronomers have discovered an Earth-sized planet that is highly volcanically active -- an unusual finding that means it could possibly support life. The newly discovered planet, LP 791-18d, is thought to be covered in volcanoes and could be as active as Jupiter's moon Io, which is the most volcanically active body in our solar system.

Exoplanet LP 791-18 d, shown in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug on the exoplanet that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io. NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

Read more
Astronomers create epic map of more than 1 billion galaxies
This is an image centered on a relatively nearby galaxy cluster dubbed Abell 3158; light from these galaxies had a redshift value of 0.059, meaning that it traveled approximately 825 million years on its journey to Earth. The image is a small part of the DESI Legacy Imaging Surveys — a monumental six-year survey covering nearly half the sky.

Recently an international collaboration of astronomers released the most accurate map yet of all the matter in the universe, to help to understand dark matter, and now this is being joined by the largest two-dimensional map of the entire sky, which can help in the study of dark energy. A data release from the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey shared the results from six years of scanning almost half of the sky, totaling one petabyte of data from three different telescopes.

This is an image centered on a relatively nearby galaxy cluster dubbed Abell 3158; light from these galaxies had a redshift value of 0.059, meaning that it traveled approximately 825 million years on its journey to Earth. The image is a small part of the DESI Legacy Imaging Surveys — a monumental six-year survey covering nearly half the sky. DESI Legacy Imaging Survey/KPNO/NOIRLab/NSF/AURA; Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab, Jen Miller, M. Zamani & D. de Martin (NSF’s NOIRLab)

Read more