Skip to main content

New developments in solar sails could enable missions to the sun’s poles

It takes a lot of power to get a spacecraft through Earth’s atmosphere and out of its gravity. But once a craft has reached orbit, it requires relatively little power to move through space. In fact, even tiny amounts of consistent power could allow a craft to travel to the furthest depths of the solar system, which is the principle behind solar sailing. This technology attaches huge, thin sheets of reflective material to a spacecraft. Tiny photons of light from the sun bounce off this material and give the craft a tiny push forward, allowing it to sail through space.

Solar sail crafts like the LightSail 2 have proven that the technology works in principle. However, there are some limitations. For a start, solar sailing craft start off traveling much more slowly than those powered by thrusters. But a bigger issue is one of navigation. Solar sails have to work with the direction of sunlight available, and maneuvering them is difficult. Now, NASA is looking into new designs for solar sails which would improve their navigational capabilities.

Diffractive solar sails, depicted in this conceptual illustration, could enable missions to hard-to-reach places, like orbits over the Sun’s poles.
Diffractive solar sails, depicted in this conceptual illustration, could enable missions to hard-to-reach places, like orbits over the Sun’s poles. MacKenzi Martin

The idea is to use a technology called diffractive solar sails, which have small gratings in the sails which lets some light through. As light passes through a small opening it spreads out, in a process called diffraction, which still provides a push against the sail. But because of the gratings, the incoming light can be more precisely controlled, hence the craft can be more accurately maneuvered.

“Diffraction essentially lets you tailor the angle at which the incoming light is redirected,” explained Amber Dubill of the Johns Hopkins University Applied Physics Laboratory, leader of the research team, in a statement. It also allows the sail to be smaller than the current huge sails used by solar sail craft.

The team is developing the technology with an eye to performing a demonstration mission that would visit the sun’s poles. It’s hard to reach these poles using traditional spacecraft propulsion systems, but solar sails could be used to put a craft in orbit around them.

“While this technology can improve a multitude of mission architectures, it is poised to highly impact the heliophysics community’s need for unique solar observation capabilities,” said Dubill. “With our team’s combined expertise in optics, aerospace, traditional solar sailing, and metamaterials, we hope to allow scientists to see the sun as never before.”

NASA has awarded the group a $2 million research grant to develop this technology under its Innovative Advanced Concepts (NIAC) program. “As we venture farther out into the cosmos than ever before, we’ll need innovative, cutting-edge technologies to drive our missions,” said NASA Administrator Bill Nelson in a statement. “The NASA Innovative Advanced Concepts program helps to unlock visionary ideas — like novel solar sails — and bring them closer to reality.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Here are the new spacesuits astronauts will wear for tonight’s Starliner launch
A graphic displaying Boeing’s spacesuit for Starliner astronauts.

A graphic displaying Boeing’s spacesuit for Starliner astronauts. NASA/Boeing

Two NASA astronauts are making final preparations directly ahead of the first crewed launch of the new Boeing Starliner capsule, which will launch from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida later tonight, Monday May 6. Butch Wilmore and Suni Williams will be aboard for liftoff at 10:34 p.m. ET (here's how to watch), when an Alliance Atlas V rocket launchesthe Starliner for its test flight to the International Space Station (ISS).

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
Total solar eclipse: NASA’s most important piece of advice
A total solar eclipse.

North America is just hours away from Monday’s total solar eclipse when the moon will come between the sun and Earth, dramatically dimming natural daylight along a 115-wide path of totality from Maine to Texas.

Millions of people are expected to witness the celestial phenomenon, with many making their way from across the U.S. -- and beyond -- to a place inside the path of totality where the effect of the eclipse will be at its most prominent.

Read more