Skip to main content

James Webb’s MIRI instrument is back to full operations

Shortly after the James Webb Space Telescope began its science operations in July this year, there was a problem with a mode on one of its instruments, the Mid-Infrared Instrument or MIRI. Now, engineers have found a way to deal with the issue, and the instrument can return to full operation.

NASA announced in September this year that one mode of the MIRI instrument was not working. Each of Webb’s four instruments can operate in multiple modes, and although MIRI was still working in three modes and able to capture some stunning images like a spooky version of the Pillars of Creation, the medium-resolution spectroscopy (MRS) mode had stopped working on August 24.

Recommended Videos

The problem was caused by a grating wheel, a piece of moving hardware that changes the filter used by the instrument mode to allow it to switch between different wavelengths for observations. There was increased friction in the wheel so the teams decided to stop using the mode while they figured out what the problem was.

Please enable Javascript to view this content

Now, the team has concluded its investigation and found that the problem “is likely caused by increased contact forces between sub-components of the wheel central bearing assembly under certain conditions,” according to a NASA update. The good news is that they have found a way to use the mode safely, as they are now able to predict how much friction will be experienced when the wheel is used.

That means that the MRS mode can be used again and has resumed observations this weekend. The mode will be used to study the poles of Saturn, which are only visible to Webb for a short time.

Future observations using the MRS mode will be limited to make sure the wheel continues to be healthy and in balance, and if it continues to operate well, it will be returned to full operations in the future.

MIRI is unlike the other three Webb instruments, which operate in the near-infrared range, as it operates in the mid-infrared. That means it requires different sensors and has to operate at a lower temperature than the other instruments, and is useful for different types of science. While the near-infrared instruments are excellent for tasks like looking back at the earliest galaxies, the mid-infrared range is useful for studying stars and planets.

“It’s such an exciting wavelength range in terms of the chemistry that you can do, and the way you can understand star formation and what’s happening in the nuclei of galaxies,” said Gillian Wright, the principal investigator for the European Consortium behind the MIRI, in a statement about the instrument.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more