Skip to main content

One of James Webb’s 17 instrument modes isn’t working

While the James Webb Space Telescope has been both a huge popular success and a highly effective research tool so far, not everything is perfect with the new observatory. This week, NASA announced that one of Webb’s 17 observing modes is not functioning due to a hardware issue that is currently under review.

Webb has four instruments, all of which operate in the infrared portion of the spectrum. Three of the instruments — NIRCam, NIRSpec, and NIRISS — operate in the near-infrared and are working as intended, but there is an issue with the fourth instrument, MIRI, which operates in the mid-infrared.

Each of the instruments can operate in different modes, such as switching between imaging and spectroscopy. There are seventeen of these modes in total, and it is one of MIRI’s modes that is not functioning.

While Webb’s other instruments are useful for cosmology research such as looking back at the earliest galaxies, MIRI, or the Mid-Infrared Instrument, is particularly useful for studying how stars and planets form. Its four modes include an imaging mode for taking pictures of dust and gas throughout galaxies, like a recent image taken of the galaxy Messier 74, and a coronagraphic mode in which light from bright stars can be blocked out to observe the exoplanets which orbit them. It also has two spectroscopy modes, and it is one of these which is not working.

“On August 24, a mechanism that supports one of these modes, known as medium-resolution spectroscopy (MRS), exhibited what appears to be increased friction during setup for a science observation,” NASA wrote in an update. “This mechanism is a grating wheel that allows scientists to select between short, medium, and longer wavelengths when making observations using the MRS mode.”

For now, scientists will not be using the MIRI medium-resolution spectroscopy mode while the issue is investigated. NASA says that an anomaly review board will be deciding on how to move forward and that teams are working on ways that the mode could be brought back into a working state. MIRI’s other three modes are still working fine, so the issue is contained to just the one mode.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more