Skip to main content

Amazing James Webb image looks like a wormhole to another dimension

Early data from the James Webb Space Telescope is already starting to come in, with exciting finds like views of Jupiter and a potential sighting of the most distant galaxy ever observed. But there’s a lot more Webb data being shared, and much of it is publicly available through the Space Telescope Science Institute’s MAST archive. That means enterprising astronomers are already digging through James Webb data to perform their own analyses, and have created some amazing visuals.

Gabriel Brammer, an associate professor at the University of Copenhagen, composed and shared this incredible and faintly terrifying image on Twitter. It shows the galaxy Messier 74, captured in the mid-infrared range by Webb’s MIRI instrument as part of the PHANGS-JWST project.

A composite of 3 monochromatic images from the MIRI instrument at wavelengths 7.7, 10, and 11 µm. The striking purple filamentary structures are emission from interstellar dust and polycyclic aromatic hydrocarbon (PAH) molecules.
The nearby spiral galaxy M74 (NGC 628) observed by JWST on July 17, 2022. The color image is a composite of three monochromatic images from the MIRI instrument at wavelengths 7.7, 10, and 11 µm. The striking purple filamentary structures are emissions from interstellar dust and polycyclic aromatic hydrocarbon (PAH) molecules. Color composite, Gabriel Brammer (Cosmic Dawn Center, Niels Bohr Institute, University of Copenhagen); Raw data, Janice Lee et al. and the PHANGS-JWST collaboration

“Let’s just see what JWST observed yesterday …” Brammer wrote on Twitter. Then, echoing all of our sentiments, “Oh, good god.”

Recommended Videos

The image is this striking purple color because of the way the data is processed, in order to show off the structures of dust and hydrocarbons which swirl around the galaxy. The data used was taken on July 17 2022 at three different wavelengths in the mid-infrared: 7.7 µm, 10 µm, and 11 µm.

The galaxy looks very different in visible light wavelengths, as shown in this image of Messier 74 captured by the European Southern Observatory’s New Technology Telescope:

ESO's PESSTO survey has captured this view of Messier 74, a stunning spiral galaxy with well-defined whirling arms.
ESO’s PESSTO survey has captured this view of Messier 74, a stunning spiral galaxy with well-defined whirling arms. ESO/PESSTO/S. Smartt

The James Webb data was collected as part of the PHANGS project, or Physics at High Angular resolution in Nearby GalaxieS, which is a survey that uses multiple different instruments including Hubble and ground-based telescopes to study how stars form from clouds of dust. The project will also work with Webb in order to peer through the clouds of dust which can otherwise obscure galaxies and get a clearer look at the star formation going on within.

The leader of the Webb part of the PHANGS research, Janice Lee of the National Science Foundation’s NOIRLab, said before the observations began that Webb could provide vital insights into understanding the life of stars: “JWST touches on so many different phases of the stellar life cycle – all in tremendous resolution,” Lee said in a statement. “Webb will reveal star formation at its very earliest stages, right when gas collapses to form stars and heats up the surrounding dust.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more