Skip to main content

Muscular mice stay stacked even on the International Space Station

Back in December, a collection of 40 mice (as in rodents, not computer peripherals) was delivered to the International Space Station aboard a SpaceX rocket for a one-month stay. While some of these mice were regular mice, others had been genetically enhanced for extra muscle growth, making them so-called “mighty mice.” The aim of their insertion into the ISS was to aid scientists in better understanding the effects of microgravity on muscle and bone degradation.

Approximately nine months after their trip to the ISS, and eight after their return to Earth, the researchers have now published details of how well the mice retained their muscle mass in microgravity. The answer? Pretty darn well. While the untreated mice lost up 18% of their muscle and bone mass in space, the mighty mice stayed comparable to the mighty mice left on Earth to act as controls at NASA’s Kennedy Space Center.

Related Videos

Even more impressively, a group of regular mice that received mighty mouse treatment on the ISS came back to Earth with much bigger muscles than they left with. The treatment works by blocking proteins, which ordinarily limit muscle mass. This is done via injection.

Ultimately, the goal isn’t to make ultra-muscular space mice, of course. (As much as fans of ‘90s cartoon Biker Mice From Mars might wish otherwise!) Instead, it’s to develop potential therapies that could be used to help human astronauts during prolonged space travel. But it might also turn out to have more Earthbound applications, too.

In an abstract, the researchers — led by Se-Jin Lee of the Jackson Laboratory in Connecticut — write that: “We show that targeting this signaling pathway has significant beneficial effects in protecting against both muscle and bone loss in microgravity, suggesting that this strategy may be effective in preventing or treating muscle and bone loss not only in astronauts on prolonged missions, but also in people with disuse atrophy on Earth, such as in older adults or in individuals who are bedridden or wheelchair-bound from illness.”

However, the researchers note that it could be some time before human trials are carried out. “We’re years away. But that’s how everything is when you go from mouse to human studies,” co-author Emily Germain-Lee of Connecticut Children’s Medical Center told The Associated Press.

A paper describing the work was recently published in the journal Proceedings of the National Academy of Sciences.

Editors' Recommendations

NASA and SpaceX target new Crew-6 launch date after scrubbed effort
Crew-6 astronauts aboard a SpaceX Crew Dragon capsule.

After NASA and SpaceX scrubbed the launch of Crew-6 just a couple of minutes before lift-off early on Monday morning, officials have announced they're now targeting Thursday for the next launch effort.

The team called off Monday’s launch attempt at the Kennedy Space Center in Florida when it suddenly encountered an issue in the ground systems affecting the loading of the ignition fluids for the Falcon 9 rocket that will carry the astronauts to the International Space Station (ISS) inside the Crew Dragon Endeavour capsule.

Read more
NASA, SpaceX delay Crew-6 launch to space station
SpaceX's Crew-6 astronauts.

Following a flight readiness review on Tuesday, NASA and SpaceX have decided to delay the Crew-6 launch to the International Space Station by about 24 hours.

The additional time will enable launch personnel to sort out some relatively minor issues with the launch vehicle, officials said.

Read more
Watch highlights of NASA’s second spacewalk of 2023
Earth as seen from the space station.

NASA has successfully completed its second spacewalk of the year at the International Space Station (ISS).

NASA astronaut Nicole Mann and Japan's Koichi Wakata of NASA counterpart JAXA spent 6 hours and 41 minutes outside the orbital outpost on Thursday before returning inside at 2:26 p.m. ET.

Read more