Skip to main content

How NASA’s Dragonfly mission will assess Titan for habitability

With the success of the Mars helicopter Ingenuity, we’ll soon be seeing more robotic explorers which observe distant locations in the solar system from the air. Set for launch in 2034, NASA’s Dragonfly mission will be a robotic rotorcraft for exploring Saturn’s moon Titan — a location that is particularly intriguing because it is thought to be potentially habitable.

Titan has a thick atmosphere and low gravity, making it relatively easy for rotorcraft to stay in the air and explore the moon from above. The mission is particularly aimed at assessing the habitability of the moon by studying both its atmosphere and its surface, getting up close to areas that are hard to study from orbit due to the thickness of the atmosphere.

This illustration shows NASA’s Dragonfly rotorcraft-lander approaching a site on Saturn’s exotic moon, Titan. Taking advantage of Titan’s dense atmosphere and low gravity, Dragonfly will explore dozens of locations across the icy world, sampling and measuring the compositions of Titan's organic surface materials to characterize the habitability of Titan’s environment and investigate the progression of prebiotic chemistry.
This illustration shows NASA’s Dragonfly rotorcraft-lander approaching a site on Saturn’s exotic moon, Titan. Taking advantage of Titan’s dense atmosphere and low gravity, Dragonfly will explore dozens of locations across the icy world, sampling and measuring the compositions of Titan’s organic surface materials to characterize the habitability of Titan’s environment and investigate the progression of prebiotic chemistry. NASA/JHU-APL

To enable this study, Dragonfly will carry an instrument called the Dragonfly Mass Spectrometer (DraMS), and NASA has recently shared more information about this instrument and how it will operate. Similar to the system on board recent Mars rovers, this instrument is used for analyzing samples which will be collected by a drill called the Drill for Acquisition of Complex Organics (DrACO).

Recommended Videos

Once DrACO has collected a sample, the mass spectrometer bombards it with energy so its molecules become ionized. The instrument can then sort these ions by their mass and charge, and then measure these sorted ions to show what the sample is composed of.

This means that DraMS will be able to tell what the surface of Titan is made of, for example. And the researchers are particularly interested in whether the surface has a chemical makeup that could lead to the formation of life.

“We want to know if the type of chemistry that could be important for early pre-biochemical systems on Earth is taking place on Titan,” explained Melissa Trainer of NASA’s Goddard Space Flight Center, in a statement. “DraMS is designed to look at the organic molecules that may be present on Titan, at their composition and distribution in different surface environments.”

This information will help us understand whether Titan could be potentially habitable and understand the chemistry that is required before life can evolve.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Watch NASA’s SLS rocket take one small step toward the Artemis II moon mission
The core stage of NASA's SLS rocket.

Artemis II Core Stage Moves to High Bay 2

Although it won’t be blasting off until mid-2026 at the earliest, preparations are already well underway for the launch of NASA’s highly anticipated Artemis II mission.

Read more
NASA learns how the Ingenuity helicopter ended up crashing on Mars
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).

Earlier this year, the NASA helicopter Ingenuity came to the end of its mission after an incredible 72 flights on Mars. The helicopter flew a remarkable 30 times farther than planned, and was the first rotocopter to fly on another planet, proving that exploring distant worlds from the air is possible. Now, NASA has revealed new details about what exactly caused the crash that brought the mission to an end, and what it learned about flying helicopters for future missions.

The final flight of Ingenuity took place on January 18, 2024, when the helicopter rose briefly into the air in a maneuver called a hop. The helicopter was fitted with a number of cameras, and shadows cast onto the planet's surface revealed that one of the helicopter's rotor blades was missing, having apparently separated at the mast. But it wasn't certain what had caused this damage.

Read more
NASA pushes back its Artemis moon missions due to heat shield issues
The Orion crew module for NASA’s Artemis II mission.

NASA has announced that it is delaying its ambitious Artemis II and Artemis III missions, which will see astronauts travel around and then land on the moon for the first time in over 50 years. The missions will be pushed to April 2026 and mid-2027 respectively, which is around six months later than previously planned.

The delay is due to problems with the Orion spacecraft's heat shield. Orion is the capsule in which crew members for each mission will travel, and it must withstand temperatures of nearly 5,000 degrees Fahrenheit during re-entry through the Earth's atmosphere. On the previous Artemis I mission in 2022, the Orion capsule was used in an uncrewed test and fared generally well, completing the mission as planned.

Read more