Skip to main content

NASA wants your help in navigating its rovers around Mars

NASA wants the public’s help with mapping out the surface of Mars, to eventually help make driving rovers like Curiosity around the red planet a bit easier.

NASA has an algorithm called SPOC (Soil Property and Object Classification), which labels different types of Mars terrain such as boulders or sand to create maps that the rover driver can use when maneuvering the vehicles. But the system is in need of refining, and that requires inputting a huge amount of data.

“Typically, hundreds of thousands of examples are needed to train a deep learning algorithm,” Hiro Ono, an A.I. researcher at NASA’s Jet Propulsion Laboratory, said in a statement. “Algorithms for self-driving cars, for example, are trained with numerous images of roads, signs, traffic lights, pedestrians, and other vehicles. Other public datasets for deep learning contain people, animals and buildings — but no martian landscapes.”

To help with the task of training the algorithm, NASA is inviting the public to help classify bits of martian terrain. The public can use the AI4Mars tool to draw boundaries around objects in the terrain and label them as sand, soil, bedrock, or big rocks. This will help teach SPOC to distinguish between different parts of the terrain, which can be used in future rover navigation.

“In the future, we hope this algorithm can become accurate enough to do other useful tasks, like predicting how likely a rover’s wheels are to slip on different surfaces,” Ono said.

Three images from the tool called AI4Mars
Three images from the tool called AI4Mars show different kinds of martian terrain as seen by NASA’s Curiosity rover. By drawing borders around terrain features and assigning one of four labels to them, you can help train an algorithm that will automatically identify terrain types for Curiosity’s rover planners. NASA/JPL-Caltech

The idea is not to replace human drivers with SPOC, as humans are still definitely required for the highly complex task of navigating a rover around another planet. But the algorithm can help them with some of the more tedious parts of their work, freeing them up to concentrate on more scientifically interesting tasks.

“It’s our job to figure out how to safely get the mission’s science,” said Stephanie Oij, one of the lab’s rover planners involved in AI4Mars. “Automatically generating terrain labels would save us time and help us be more productive.”

You can start labeling terrain and helping out the rover drivers at the AI4Mars website.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA regains communications with Mars helicopter Ingenuity
The Ingenuity helicopter is pictured on the surface of Mars.

Just a few days after losing contact with the Mars helicopter Ingenuity, NASA announced that it has regained communications with the plucky little helicopter. In a post on X (formerly Twitter), NASA's Jet Propulsion Laboratory, which designed and operated the helicopter, announced that it is back in touch following an unexpected communications dropout.

The Ingenuity helicopter is pictured on the surface of Mars. NASA

Read more
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more
NASA has lost communication with the Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

The Mars helicopter Ingenuity has had a remarkable lifespan and has proven to be a greater success than anyone imagined. Originally designed to perform just five flights over the surface of Mars, the helicopter has now performed more than 70. However, NASA has now announced that it has lost contact with the helicopter, though it's unclear how serious this problem is.

The helicopter was performing its 72nd flight, which was an adjustment and correction to a previous flight that was cut short. Flight 71 was intended to be a journey of 1,175 feet (358 meters), but when the helicopter made this flight earlier in the month, it traveled just a third of that. The problem was related to its downward-facing camera, which uses surface indications for autonomous navigation. The helicopter was traveling over a particularly featureless expanse of the surface, and the lack of landmarks appeared to cause a problem with its navigation, forcing the flight to end early.

Read more