Skip to main content

Scientists want to farm oxygen from the Martian soil

Of the many dangers future human explorers will face on Mars, one of the most troublesome is the toxic chemicals that exist in the Martian soil or regolith. But these chemicals aren’t only a hindrance to exploration — they could also be key to producing usable oxygen on a planet where the majority of the atmosphere is carbon dioxide.

The European Space Agency (ESA) is developing a device that can detect chemicals called reactive oxygen species. These come from sources such as perchlorates, the salts found on the Martian surface which are known to cause thyroid issues and other health problems in humans. There are two big reasons to detect such chemicals: Firstly, to make sure explorers don’t come into contact with them, and secondly, to make sure that the oxygen they can give off isn’t mistaken for a sign of life.

The "Kimberley" formation on Mars taken by NASA's Curiosity rover. The strata in the foreground dip towards the base of Mount Sharp in the background.
A view from the “Kimberley” formation on Mars taken by NASA’s Curiosity rover. The strata in the foreground dip towards the base of Mount Sharp, indicating flow of water toward a basin that existed before the larger bulk of the mountain formed. NASA/JPL-Caltech/MSSS

Such a detection device, however, could have other useful applications too. “The exciting aspect is that this technique can be used for more than just superoxide detection,” explained ESA materials and processes engineer Malgorzata Holynska in a statement. “The project, supported through ESA’s Technology Development Element, will include the initial design of a large scale reactor device to periodically extract oxygen from soil, what we term ‘oxygen farming’. Solar UV irradiation will then replenish their oxygen supply within a matter of hours. The estimate is that a 1.2 hectare (3 acre) area would yield enough oxygen to keep a single astronaut alive.”

Recommended Videos

It is difficult to test this developing technology, however. There do exist simulants of the Martian soil, created for research based on what we know about the composition of the regolith there. However, for safety reasons, these simulants have the dangerous chemicals removed, and these are crucial for testing. So the team is creating their own regolith simulant, as well as using samples of Martian and lunar meteorites. The team says it is planning to apply to NASA to see if they can get actual lunar samples from the Apollo missions to test on as well.

“The aim is that the prospecting detector should be smaller than a paperback book,” said Dr. Ioannis Markopoulos, leader of the company 01 Mechatronics company which is planning to produce a prototype detector. “It is likely that astronauts would find it useful across the entire span of any mission to the Moon and Mars.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Mushroom houses: NASA wants to grow its own Mars habitats from fungi
A stool constructed out of mycelia after two weeks of growth. The next step is a baking process process that leads to a clean and functional piece of furniture.

Bricks produced using mycelium, yard waste, and wood chips as a part of the myco-architecture project. Similar materials could be used to build habitats on the Moon or Mars. NASA

When future astronauts set out for the moon or for Mars, they'll need some shelter. And while you might imagine cities on other planets being made of steel, or glass, or some high-tech carbon fiber compound, NASA has other ideas. The agency is funding research into growing their own habitats out of fungi.

Read more
Auroras and radiation from solar storms spotted on Mars
The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.

The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here. NASA/JPL-Caltech

The recent solar storms caused epic events here on Earth, where auroras were visible across much of the globe last month. These storms, caused by heightened activity from the sun, don't only affect our planet though -- they also affect Mars. NASA missions like the Curiosity rover have been observing the effects of solar storms there, where the very thin atmosphere creates a potentially dangerous radiation environment. If we ever want to send people to visit the red planet, we're going to need to learn more about this radiation and how it's affected by events like solar storms.

Read more
Asimov’s vision of harvesting solar power from space could become a reality
Simplified diagram of space solar power concept..

It's an idea straight out of science fiction: A space station orbits around Earth, harvesting energy from the sun and beaming it down to our planet. Isaac Asimov popularized the concept in his 1941 story Reason, and futurists have been dreaming about it ever since.

But this notion is more than just an idle fantasy -- it's a highly practical concept being pursued by space agencies across the world, and it's almost within reach of current technologies. It could even be the solution to the energy crisis here on Earth.

Read more