Skip to main content

Unusual puffy exoplanet has the density of marshmallow

Exoplanets come in all sorts of sizes and all sorts of densities, from solid rocky planets like Earth or Mars to super-puff planets discovered by Hubble. Now, researchers using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory have identified a puffy, low-density “marshmallow” planet orbiting a cool red dwarf star. TOI-3757 b, located 580 light-years away, is the lowest-density gas giant planet ever discovered orbiting this kind of star.

Red dwarfs are the most common type of star in the galaxy and are cooler than our sun, but they can give off powerful flares of radiation that would bombard nearby planets with ultraviolet light. These flares could strip the atmosphere off a planet, so it was thought that it would be unlikely to find puffy gas giants orbiting these stars.

A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.
A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star. NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani
“Giant planets around red dwarf stars have traditionally been thought to be hard to form,” said lead researcher Shubham Kanodia of the Carnegie Institution for Science in a statement. “So far this has only been looked at with small samples from Doppler surveys, which typically have found giant planets further away from these red dwarf stars. Until now we have not had a large enough sample of planets to find close-in gas planets in a robust manner.”

The researchers think that this unusual planet was able to form because of the composition of its stars and its orbit. The star has an unusually low level of heavier elements which could have caused the core of the planet to form more slowly than is typical, making it acquire gas slowly and contributing to its low density. The planet’s orbit seems to be elliptical as well, meaning it comes closer to the star at some times than at others, which would have warmed the planet and caused its atmosphere to puff up further.

Current estimations put the density of the planet at an average of 0.27 grams per cubic centimeter, which is less than half the density of Saturn — “or in fact, similar in density to a marshmallow,” as NOIRLab writes.

The researchers plan to make more observations of the planet using the James Webb Space Telescope, looking at its atmosphere in particular. And they plan to search for other similar planets.

“Finding more such systems with giant planets — which were once theorized to be extremely rare around red dwarfs — is part of our goal to understand how planets form,” said Kanodia.

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers watch a preview of the destruction of the Earth
Astronomers using the Gemini South telescope in Chile, operated by NSF’s NOIRLab, have observed the first compelling evidence of a dying Sun-like star engulfing an exoplanet. The “smoking gun” of this event was seen in a long and low-energy outburst from the star — the telltale signature of a planet skimming along a star’s surface. This never-before-seen process may herald the ultimate fate of Earth when our own Sun nears the end of its life in about five billion years.

Astronomers recently caught the grisly sight of an exoplanet being devoured by its star, in a preview of what will eventually happen to the Earth. The sun-like star is located within our galaxy, around 12,000 light-years away, and has puffed up into an end-of-life state called a red giant. As it grows, it expands outward, which is how it was able to swallow the Jupiter-sized planet that had been in orbit around it.

The researchers were able to spot the event because of the distinctive brightening pattern of the star, which is similar to what we can expect will eventually happen to our sun. “We are seeing the future of the Earth,” said lead author of the research, Kishalay De of the Massachusetts Institute of Technology (MIT), in a statement. “If some other civilization was observing us from 10,000 light-years away while the sun was engulfing the Earth, they would see the sun suddenly brighten as it ejects some material, then form dust around it, before settling back to what it was.”

Read more
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
Previously unknown exoplanet discovered using machine learning
exoplanet discovered machine learning image png

When it comes to discovering new astronomical bodies, sometimes humans are irreplaceable thanks to their skills in pattern detection. But in other cases, computers can spot things that aren't visible to humans -- including a recent instance where an exoplanet was discovered using machine learning.

The exoplanet was discovered by University of Georgia researchers within a protoplanetary disk called HD 142666. A protoplanetary disk is a rotating disk of gas that swirls around young stars, and from which planets are formed. Planets are formed within these disks as matter clumps together until it eventually has enough gravity to pull more material in. The researchers looked at a previous set of observations of a whole set of protoplanetary disks, and used a machine learning model to search for exoplanets that might have been missed the first time around. They identified one disk where a planet was likely to be, based on the unusual way that gas moved around within the disk.

Read more