Skip to main content

Unusual puffy exoplanet has the density of marshmallow

Exoplanets come in all sorts of sizes and all sorts of densities, from solid rocky planets like Earth or Mars to super-puff planets discovered by Hubble. Now, researchers using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory have identified a puffy, low-density “marshmallow” planet orbiting a cool red dwarf star. TOI-3757 b, located 580 light-years away, is the lowest-density gas giant planet ever discovered orbiting this kind of star.

Red dwarfs are the most common type of star in the galaxy and are cooler than our sun, but they can give off powerful flares of radiation that would bombard nearby planets with ultraviolet light. These flares could strip the atmosphere off a planet, so it was thought that it would be unlikely to find puffy gas giants orbiting these stars.

A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.
A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star. NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani
“Giant planets around red dwarf stars have traditionally been thought to be hard to form,” said lead researcher Shubham Kanodia of the Carnegie Institution for Science in a statement. “So far this has only been looked at with small samples from Doppler surveys, which typically have found giant planets further away from these red dwarf stars. Until now we have not had a large enough sample of planets to find close-in gas planets in a robust manner.”

The researchers think that this unusual planet was able to form because of the composition of its stars and its orbit. The star has an unusually low level of heavier elements which could have caused the core of the planet to form more slowly than is typical, making it acquire gas slowly and contributing to its low density. The planet’s orbit seems to be elliptical as well, meaning it comes closer to the star at some times than at others, which would have warmed the planet and caused its atmosphere to puff up further.

Current estimations put the density of the planet at an average of 0.27 grams per cubic centimeter, which is less than half the density of Saturn — “or in fact, similar in density to a marshmallow,” as NOIRLab writes.

The researchers plan to make more observations of the planet using the James Webb Space Telescope, looking at its atmosphere in particular. And they plan to search for other similar planets.

“Finding more such systems with giant planets — which were once theorized to be extremely rare around red dwarfs — is part of our goal to understand how planets form,” said Kanodia.

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
NASA has collected a whopping 121 grams of sample from asteroid Bennu
A view of eight sample trays containing the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams.

When the OSIRIS-REx dropped a capsule in the Utah desert last year, it made headlines around the globe for returning NASA's first sample of an asteroid to Earth. Scientists were eager to get their hands on the sample of asteroid Bennu to learn about the early formation of the solar system, but actually getting at the sample proved to be rather trickier than imagined.

Scientists were able to extract 70 grams of material from the sample canister relatively easily, making it by far the largest asteroid sample ever brought to Earth, but two troublesome fasteners made it difficult to extract the rest of the sample. The team knew it had plenty more sample inside, but it had to be patient as special new tools were constructed that could undo the fasteners without losing a single gram of the precious sample.

Read more