Skip to main content

Two spacecraft worked together to learn about Venus’ magnetic field

When spacecraft launch to visit distant planets in the solar system, they rarely travel directly from Earth to their target. Because of the orbits of the planets and limitations on fuel, spacecraft often make use of other planets they pass by to get a gravity assist to help them on their way. And that means that spacecraft frequently perform flybys of planets that are not their main focus of study.

Researchers don’t waste any opportunity to learn about other planets though, so spacecraft often take as manyreadings as they can when passing by. For example, both the BepiColumbo spacecraft, on its way to study Mercury, and the Solar Orbiter spacecraft, designed to study the sun, have made recent flybys of Venus. Now, researchers are combining data from both of these missions to learn more about Venus and its magnetic field.

Related Videos
Artist impression of BepiColombo flying by Venus on 10 August 2021. The spacecraft makes nine gravity assist maneouvres (one of Earth, two of Venus and six of Mercury) before entering orbit around the innermost planet of the Solar System.
Artist impression of the BepiColombo flying by Venus on 10 August 2021. ESA/ATG medialab

Both spacecraft happened to fly past Venus within a few days of each other in August 2021, allowing scientists to get a view of the planet from two different positions using eight different sensors. They were particularly interested in the planet’s magnetic field, as unlike Earth, it does not generate an intrinsic magnetic field, but the interaction of the solar wind and its atmosphere does produce what is called an induced magnetosphere.

The Solar Orbiter observed the solar winds approaching Venus, while BepiColombo observed the tail of the induced magnetic field. “These dual sets of observations are particularly valuable because the solar wind conditions experienced by Solar Orbiter were very stable. This meant that BepiColombo had a perfect view of the different regions within the magnetosheath and magnetosphere, undisturbed by fluctuations from solar activity,” said  Moa Persson of the University of Tokyo in Kashiwa, Japan, lead author of a paper on the topic that was published in Nature, in a statement.

Artist's impression of Solar Orbiter making a flyby at Venus.
Artist’s impression of the Solar Orbiter making a flyby at Venus. ESA/ATG medialab

The researchers found that the magnetosphere is protecting the planet’s atmosphere from being eroded away by solar winds, which can help us understand more about conditions of habitability.

It also shows how valuable bonus science can be when data is collected from spacecraft passing by a planet by. “The important results of this study demonstrate how turning sensors on during planetary flybys and cruise phases can lead to unique science,” said co-author Nicolas Andre, the coordinator of the Europlanet SPIDER service at the Institut de Recherche en Astrophysique et Planétologie in Toulouse, France.

Editors' Recommendations

Three galaxies are in the process of merging in this Hubble image
A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background.

This week's image from the Hubble Space Telescope shows a dramatic collision of three different galaxies. The trio, located in the Boötes constellation, are in the process of merging and will eventually form one single large galaxy.

A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background. ESA/Hubble & NASA, M. Sun

Read more
James Webb Telescope catches a glimpse of young version of the Milky Way
This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler galaxy provides a snap-shot of an infant Milky Way as it accretes mass over cosmic time.

Data from the James Webb Space Telescope has given a glimpse into what our galaxy was like in its formative years. Webb observed a galaxy called The Sparkler, which is analogous to what the Milky Way would have been like when it was young, when it had less mass and only a handful of globular clusters.

This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler Galaxy provides a snapshot of an infant Milky Way as it accretes mass over cosmic time. James Josephides, Swinburne University.

Read more
Hubble is investigating mysterious ‘spokes’ in Saturn’s rings
NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image.

Saturn is famous for its beautiful rings, but these rings have a strange feature: "spokes" which appear intermittently. These spots in the rings can be light or dark and can look like blobs or like lines stretching radially outward from the planet, and they appear in a regular cycle related to the planet's equinox. Now, the Hubble Space Telescope has the opportunity to study these oddities of the rings in more detail and researchers hope they can learn more about what causes these features.

NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image. SCIENCE: NASA, ESA, Amy Simon (NASA-GSFC) IMAGE PROCESSING: Alyssa Pagan (STScI)

Read more