Skip to main content

Why NASA scientists are shooting lasers at the moon

NASA scientists have been firing a laser beam at a reflector on the Lunar Reconnaissance Orbiter (LRO) for the last decade, and recently they received a signal back for the first time. This is the latest step forward in the surprising science of lasers and reflectors on the moon.

Over the years, many craft have carried reflectors to the moon. These panels or cubes are generally small and are covered in mirrors, which is how they can reflect light including lasers. During the Apollo era, reflectors were delivered by the Apollo 11 and Apollo 14 crews, and during this time Soviet landers Lunokhod 1 and 2 delivered reflectors as well.

The tradition of taking reflectors to the moon continues to this day, with the Israeli lunar craft Beresheet carrying one last year. The craft crashed into the moon, but scientists believe that the reflector device may have survived the impact.

A close-up photograph of the laser reflecting panel deployed by Apollo 14 astronauts on the Moon in 1971.
A close-up photograph of the laser reflecting panel deployed by Apollo 14 astronauts on the Moon in 1971. NASA

These reflectors can be used to take extremely accurate measurements of the distance to the moon, and show that the moon does not stay in the same orbit relative to Earth. In fact, the moon is slowly drifting away from us at a rate of 1.5 inches per year — or, as NASA puts it, the rate at which fingernails grow.

“Now that we’ve been collecting data for 50 years, we can see trends that we wouldn’t have been able to see otherwise,” Erwan Mazarico, a planetary scientist from NASA’s Goddard Space Flight Center who worked on the LRO experiment, said in a statement. “Laser-ranging science is a long game.”

To measure the distance between the Earth and the moon, the scientists time how long it takes for the laser signal they send to bounce off the reflector and be received on Earth again. This takes a few seconds and allows highly accurate measurements of long distances. The problem is that the laser beams spread out over the distance and only a few photons, if any, make it back to Earth. This is why it took so long for the LRO experiment to get results.

The wait is worth it, however, given how laser measurements could reveal information about the moon such as finding out about its internal structure and evolution. Getting an even more accurate measurement is key, according to Xiaoli Sun, a Goddard planetary scientist who helped design LRO’s reflector: “The precision of this one measurement has the potential to refine our understanding of gravity and the evolution of the solar system,” Sun said.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Meet NASA’s trio of mini moon rovers set to launch next year
Part of NASA’s CADRE technology demonstration, three small rovers that will explore the Moon together show off their ability to drive as a team autonomously – without explicit commands from engineers – during a test in a clean room at the agency’s Jet Propulsion Laboratory in December 2023.

NASA is ramping up its plans for exploring the moon, not only in terms of preparing to send astronauts there but also rovers. There's the VIPER rover, which will search for water around the lunar south pole, and now NASA is introducing a trio of mini rovers called CADRE, or Cooperative Autonomous Distributed Robotic Exploration. These will work together as a team to map the lunar surface, testing the possibilities of using rovers in groups for future exploration.

The rovers, developed at NASA's Jet Propulsion Laboratory, are just the size of a carry-on suitcase. They are designed to move independently but share data so they can cover more ground than a single rover could. They'll have to work over a lunar day, which is about two weeks, to map out features on the surface and look below ground using radar.

Read more
NASA addresses the crack in the hatch of the Crew-8 spacecraft
NASA’s SpaceX Crew-8 mission launches from Kennedy Space Center at 10:53 p.m. EST on Sunday, March 3, 2024.

NASA and SpaceX have sent off the latest batch of astronauts to visit the International Space Station, with the launch of the Crew-8 mission late last night. The SpaceX Dragon spacecraft launched from Launch Complex 39A at NASA’s Kennedy Space Center in Florida just before 11 p.m. ET on Sunday, March 3, but there was a risk during that the launch might have been cancelled due to a crack discovered in the hatch seal of the spacecraft around 30 minutes before liftoff.

This morning, NASA shared further details about the crack and why they were confident in letting the launch go ahead.

Read more
Listen to the sounds of a space nebula with NASA sonifications
nasa sonifications nebula documentary sonify8 525 1

A NASA project called sonifications gives a new way to experience beautiful images of space: via sound. Three new sonifications have translated visual information in images taken by NASA telescopes into soundscapes, letting you hear the sounds of cosmic objects.

The new sonifications are of a famous nebula, a distant galaxy, and a dead star, using data from NASA's Chandra X-ray Observatory as well as the James Webb Space Telescope and the Hubble Space Telescope. Previous sonifications have included the sounds of a black hole and a pair of interacting galaxies.

Read more