Skip to main content

Looking back on some of the universe’s oldest galaxies with James Webb

The James Webb Space Telescope continues to astonish, with early data from one of its survey projects providing a tantalizing glimpse at some extremely distant and extremely old galaxies. Early data from the Cosmic Evolution Early Release Science Survey (CEERS) has been compiled into a stunning view of a field of galaxies including one of the most distant galaxies yet observed. This galaxy could have a redshift of 14, referring to the degree to which light is shifted to the red end of the spectrum by the expansion of the universe.

This image is part of a larger mosaic taken with the Near Infrared Camera (NIRCam) on the James Webb Space Telescope. It’s from a patch of sky near the handle of the Big Dipper. This is one of the first images obtained by the Cosmic Evolution Early Release Science Survey (CEERS) collaboration.
This image is part of a larger mosaic taken with the Near Infrared Camera (NIRCam) on the James Webb Space Telescope. It’s from a patch of sky near the handle of the Big Dipper. This is one of the first images obtained by the Cosmic Evolution Early Release Science Survey (CEERS) collaboration. NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay

This finding of a galaxy with a redshift of more than 14 puts it as even more distant than another distant galaxy discovered by Webb which recently made headlines, as that one had a redshift of 13. The magnitude of the redshift of a galaxy is denoted using the letter z, with redshifts of more than 8 indicating that the light from an object has traveled for more than 13 billion years, for example. However, that doesn’t mean that an object with a redshift of 8 is 13 billion light-years away — as the universe has been expanding during all that time, such an object would in fact be more than 25 billion light-years away.

Finding an object with a redshift of 14 is unprecedented, and it indicates that we are looking back at a galaxy that formed within just 290 million years after the Big Bang. This was during a period called the Epoch of Reionization when the hydrogen began to be ionized and the first light shone through the universe.

The finding is also intriguing as it suggests that these very distant galaxies could be more common than predicted, meaning there is a great opportunity for studying them. “These images are exciting because the sheer number of these really high redshift galaxy candidates is larger than we expected,” said one of the authors, Jeyhan Kartaltepe of Rochester Institute of Technology, in a statement. “We knew we’d find some, but I don’t think anybody thought we’d find as many as we have. It either means the universe works a little bit differently than we thought or there’s a lot of other contaminating sources and these candidates will turn out to be something else. The reality is probably a mix of both.”

The research will be published in The Astrophysical Journal and is available to view on the pre-print archive arXiv.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps
Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more