Skip to main content

Tiny microbots fold like origami to travel through the human body

Tiny robots modeled after bacteria could be used to deliver drugs to hard to reach areas of the human body. Scientists at École polytechnique fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) have developed what they call elastic microbots that can change shape depending on their environment.

The robots are modeled after bacteria and fully biocompatible EPFL/ ETHZ

When a patient needs medication, traditionally it is given orally or intravenously and the body’s systems will carry the medicine to the part of the body where it is needed. But recent developments in the field of targeted drug delivery have helped to ensure that medication is delivered to the specific area where it is required, with a higher concentration of the medication in some places. The development of elastic robots could potentially revolutionize targeted drug delivery by making it possible to deliver medication to any area of the body, even those that are difficult to access.

Smart microrobots that can adapt to their surroundings

The microbots are highly flexible and are able to swim through fluids and change their shape in response to their environment, meaning they can squeeze through narrow blood vessels without slowing down or being difficult to maneuver. The bots are made of minute hydrogel nanocomposites which contain magnetic nanoparticles, so they can be controlled through the use of an electromagnetic field.

After creating the robots, the challenge was to find a way to “program” their shapes so that they could pass through all the different environments of a human body. Scientists found a way to use embodied intelligence, in which the bot’s physical being is adaptive to surroundings, rather than the traditional computation that most electronic systems use. The bots are constructed with an origami-based folding method which allows them to deform to the most efficient shape for any given environment, and deformations can be set in advance to make performance smoother. Once inside a body, the robots can either be controlled by an electromagnetic field or they can be left to make their own way by using the fluid flow inside the body.

“Our robots have a special composition and structure that allow them to adapt to the characteristics of the fluid they are moving through,” said Selman Sakar,  Assistant Professor, Institute of Mechanical Engineering, EPFL, in a statement. “For instance, if they encounter a change in viscosity or osmotic concentration, they modify their shape to maintain their speed and maneuverability without losing control of the direction of motion.”

The findings are published in Science Advances.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more
What comes after Webb? NASA’s next-generation planet-hunting telescope
An illustration shows how NASA's Habitable Worlds Observatory would measure the atmosphere of distant planets.

When it comes to building enormous, complex space telescopes, agencies like NASA have to plan far in advance. Even though the James Webb Space Telescope only launched recently, astronomers are already busy thinking about what will come after Webb — and they've got ambitious plans.

The big plan for the next decades of astronomy research is to find habitable planets, and maybe even to search for signs of life beyond Earth. That's the lofty goal of the Habitable Worlds Observatory, a space telescope currently in the planning phase that is aimed at discovering 25 Earth-like planets around sun-like stars.

Read more