Skip to main content

Digital Trends may earn a commission when you buy through links on our site. Why trust us?

The best of biomimicry: Here’s 7 brilliant examples of nature-inspired design

Sometimes the best solution to a problem isn’t alway the most complex, and, similarly, the best answer isn’t always a new one one. While us humans may just be getting our feet wet (relatively speaking) with ingenuity, the animal kingdom has millennia of evolutionary trial-and-error to learn from.

Biomimicry, as it’s called, is a method for creating solutions to human challenges by emulating designs and ideas found in nature. It’s used everywhere: buildings, vehicles, and even materials — so we thought it’d be fun to round up a few of the most noteworthy examples. Here are eight of the most astounding technological applications inspired by nature.

Recommended Videos

Bullet trains inspired by Kingfisher birds

When Japanese engineers took on the daunting task of upgrading their high-speed bullet trains their design hit one unfortunate snag. The problem wasn’t getting this trains up to the desired speeds, but rather the massive amount of noise created by the displacement of air ahead of the trains. As the trains entered tunnels, the vehicles would often create a loud shock wave known as “tunnel boom.” The power of the shock waves even caused structural damage to several tunnels.

The design team determined the culprit to be the trains rather blunt front nose cap. To minimize the tunnel boom and increase overall aerodynamics they would need a more streamlined nose. The engineers eventually modeled the next model after the beak of the Kingfisher bird.

Kingfisher birds have specialized beaks allowing them to dive into water to hunt while making a minimal splash. Utilizing this new nose, the next generation 500 series trains were 10 percent faster, consumed 15 percent less electricity, and, most importantly, no more “boom.”

Wind turbines modeled after Humpback whales

Many of our modern aerodynamic designs rely on rather basic principles. To obtain optimal lift and minimal drag, sleek edges and clean lines are key. However, throughout the animal kingdom, many species, capable of exceptional lift. The Humpback whale, for example, uses bumpy, tubercle fins for propulsion — which seems rather counterintuitive.

A Harvard led research team determined that these nodules, enable the whales to choose a steeper “angle of attack.” The angle of attack is the angle between the flow of water and the face of the flipper. With Humpback whales, this attack angle can be up to 40 percent steeper than a smooth flipper. Due to these small ridges, sectional stalls occur at different points along the fin. This makes a full on stall much easier to avoid.

Tests conducted by the U.S. Naval Academy, using model flippers, determined these biomimetic fins reduced drag by nearly a third and improved lift by eight percent overall.  Whale Power, a company based in Toronto, Canada has already capitalized on this latest tubercle tech. According to MIT, Whale Power’s biomimetic blades help generate the “same amount of power at 10 miles per hour that conventional turbines generate at 17 miles per hour.”

Antimicrobial film mimicking sharkskin

Sharks are one of the apex predators of the seas. Their hunting prowess has been fine-tuned over millennia of evolution. While sharks are well known for their acute sense of smell and regenerating teeth, new research may actually point to the species’ skin as its most evolutionary niche asset.

Sharkskin is covered with so-called “dermal denticles.” Think of these as essentially flexible layers of small teeth. When in motion, these dermal denticles actually create a low-pressure zone. This leading edge vortex essentially “pulls” the shark forward and also helps to reduce drag. Needless to say, there are plenty of applications for such a design.

Speedo notoriously incorporated biomimetic sharkskin into a line of swimsuits for the 2008 Olympics. According to the Smithsonian, 98 percent of the medals at the 2008 Olympics were won by swimmers wearing this sharkskin swimwear. Since then the technology has been banned in Olympic competition.

Similarly, while many aquatic species are known to host other marines species on their bodies (such as barnacles) sharks remain relatively “clean” so to speak. These microscopic dermal denticles also help sharks fend-off micro organisms. The U.S. Navy has since developed a material, known as Sharklet, based on this skin pattern to help inhibit marine growth on ships. Based on this same idea, many hospitals are also using a biomimetic sharkskin film to combat cross-contamination.

Sharkskin, so hot right now.

Harvesting water like the Stenocara beetle

Wikimedia Commons

It’s really no secret at this juncture: access to water is pivotal to any sustainable civilization and life on this planet in general. While some locations on the globe have bountiful water resources such as lakes and rivers, more arid climates must make do with limited precipitation. Technology derived from a beetle thriving in one of the harshest environments on Earth may very well help start the next generation of clean water harvesting.

The Stenocara beetle lives in the arid African Namib dessert, but the dime-sized critter has an evolutionary hack to help it literally pull water out of literal thin air. A pattern of nodes along the beetle’s back enable the creature to collect moisture from the morning fog. The droplets then slide off the bumps into small channels towards the beetle’s mouth. Academics are currently using this research to develop biomimetic patterns capable of harvesting water from the air.

Absorbing shock like a woodpecker

123RF/AbiWarner

Woodpeckers are known for their exceptional excavating capacity. The creatures use their beaks to forage for insects and also to create nooks for themselves. As woodpeckers bore these holes, they experience a deceleration of 1200 gravitational pulls (Gs) nearly 22 times per second. To put that in perspective, a severe car crash would deliver the equivalent of 120 Gs on a passenger. Just how does the woodpecker withstand these perpetual jolts?

The answer: natural shock absorbers. Using video and CT scans, researched at the University of California, Berkeley, discovered that woodpeckers have four structures designed to absorb mechanical shock. The bird’s semi-elastic beak, an area of “spongy bone” material behind the skull, and cerebrospinal fluid all work in unison to extend the time over which this concussion occurs and therefore inhibiting vibration. Based on this multifaceted design, the team is working to create an array applications ranging from more shock-resistant flight recorders (black boxes) to micrometeorite-resistant spacecrafts.

Cephalopod camouflage

Squids, like all cephalopods, are capable of glowing (bioluminescence) as well as changing their skin color. This camouflaging capacity enables them to hide from predators while the bioluminescence allows them to communicate with and/or attract a mate. This complex behavior is produced by a network specialized skin cells and muscles.

Researchers at the University of Houston have developed a similar device capable of detecting its surrounds and matching this environment in mere seconds. This early prototype uses a flexible, pixelated grid utilizing actuators, light sensors, and reflectors. As the light sensors detect a a change in the surroundings, a signal is sent to the corresponding diode. This creates heat in the area and the thermochromatic grid then changes color. This artificial “skin” could have both military and commercial applications down the road.

Ventilation systems inspired by termites

Oftentimes, biomimicry isn’t simply about mimicking an anatomical or evolutionary niche of a species. Sometimes, we can even take cues from the structures these animals build to create better life support systems for ourselves.

Termites often get a bad rap because of their destructive properties. However, termites are infamous for creating some of the most elaborate ventilation systems for cooling on the planet. Even in some of the hottest places, these termite mounds, remain exceptionally cool inside.

Using an intricate network of intentionally air pockets, the mounds create a natural ventilation system using convection.  The engineering firm Arup built an entire shopping center in Zimbabwe based on this natural convection system. Currently the system uses 10 percent less energy than a traditional air-conditioned facility.

Dallon Adams
Former Editorial Assistant
Dallon Adams is a graduate of the University of Louisville and currently lives in Portland, OR. In his free time, Dallon…
The Ioniq 5 is once again eligible for the $7,500 tax credit
2025 Hyundai Ioniq 5

After a brief and confusing absence, the Hyundai Ioniq 5 is once again eligible for the full $7,500 federal tax credit — and this time, it's sticking around (at least for now). So, what happened? Let’s unpack the ride.

The Ioniq 5, a sleek and tech-savvy electric crossover, initially made headlines not just for its design, but for being built at Hyundai’s brand-new Metaplant in Georgia. That domestic assembly qualified it for the EV tax credit under the Inflation Reduction Act (IRA), which requires vehicles to be made in North America with batteries sourced from trade-friendly countries. But early in 2025, the Ioniq 5 vanished from the list. Why? Likely due to its battery packs, which were then still being sourced from SK On’s Hungarian facility.

Read more
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more