Skip to main content

With lasers and hot nylon, Formlabs just took 3D printing to a whole new level

Yesterday, while the world was fixated on Apple’s WWDC kickoff, Boston-based 3D printing startup Formlabs quietly unveiled a revolutionary new laser sintering printer called the Fuse 1 — and it’s kind of a big deal.

Truth be told, you’re probably never going to use it. It’s about the size of a mini-fridge, it’s designed for professionals, and it costs $10,000 dollars. But even if you never see one, the Fuse 1 has some huge implications for the future of 3D printing. Here’s why you should be excited about it.

The slow march of 3D printing progress

Back when 3D printing was just beginning to make its way into the mainstream, the only printers available to consumers relied on more or less the same technique to create parts — a process known as filament deposition modeling, or FDM. It’s the type of 3D printing you’ve probably seen before: A printer feeds a strand of plastic filament through a hot nozzle, then carefully deposits the molten goo onto a build plate, layer by layer, to create a 3D object. It’s what most people envision when they hear the phrase “3D printing.”

Most 3D printers available to consumers relied on more or less the same technique to create parts — a process known as filament deposition modeling, or FDM.

Thing is, FDM is just one small chunk on the broader spectrum of 3D printing technologies. There are tons of other additive manufacturing techniques out there, like stereolithography, polyjet, and laser sintering — all of which are vastly superior to FDM printers in terms of print quality. But unfortunately, despite the fact that 3D printing has become increasingly mainstream over the past few years, most of these awesome additive manufacturing techniques still aren’t available at a consumer level. The machines are just so ridiculously expensive that you’ll only ever find them in industrial manufacturing facilities.

But that’s starting to change. As 3D printing has entered the consumer space and become more competitive, companies like Formlabs have started to figure out ways to reengineer those high-end industrial technologies and make them more affordable and accessible.

The resin revolution

It all started with stereolithography (SLA). This technique — in which a UV laser is used to ‘grow’ high resolution objects out of a puddle of light-reactive resin — has been around for decades, but up until a few years ago, SLA machines were too expensive for individual consumers to use. But then, in 2012, Formlabs unveiled the Form 1, the world’s first consumer-level SLA printer, in a Kickstarter campaign.

Almost instantly, this sparked a revolution. Shortly after Formlabs wrapped up its hugely successful crowdfunding campaign, other startups followed suit and began releasing SLA printers of their own. Fast forward five years, and now they’re more common and affordable than ever before. Whereas SLA machines used to cost upwards of $100,000, you can get your hands on one for as little as $1,200 online. Of course, they’re still not quite as cheap or ubiquitous as FDM printers, but SLA machines have steadily become more popular, affordable, and accessible in a relatively short amount of time. And all it took was one company hitting it big and proving that better 3D printing tech has mass appeal. 

Bold new territory

Now, with the Fuse 1, Formlabs might just do the same thing for selective laser sintering technology — and that’s a pretty exciting prospect.

SLS printing works very differently than FDM and SLA. To create an object, the machine flashes a laser over a bed of superfine powder, fusing the particles together to form a thin, solidified layer. The machine then sweeps more powder over the top of that layer, and repeats the process until the print is complete.

SLS printers can make objects that are nearly as good as parts created through injection molding, milling, and other traditional manufacturing processes.

Printing objects in this fashion has a number of distinct advantages. It works with a broad range of materials, can print large overhangs and spans without using support material, and the parts it produces are extremely high quality. Nylon parts printed with the Fuse 1 are actually durable enough and detailed enough to be sold as end-use parts.

That’s what makes this technology so special. Whereas FDM and SLA printers are good for prototyping, SLS printers can make objects that are nearly as good as parts created through injection molding, milling, and other traditional manufacturing processes. In other words, they can make high-quality stuff that’s ready to use straight out of the printer. Need a new bike pedal, hair-dryer, or smartphone case? Just print one and save yourself a trip to the store.

That’s the road we’re headed down, but we’re not quite there yet. This kind of printing tech still isn’t cheap. Regardless of the fact that the Fuse 1 is 20 times cheaper than most industrial SLS printers, it still costs $10,000 — which puts it out of reach for most of us.  But it’s important to remember that this is just the beginning.

Introducing the Fuse 1

If SLS printers can come down from $200K to just $10K, it stands to reason that, in another 5 or 10 years, the technology might just trickle down to an attainable level for non-commercial users.

This kind of democratization is exactly what 3D printing needs in order to become ubiquitous. If we’re ever going to realize a future in which 3D printers are a household staple akin to dishwashers and microwaves, where we can print high-quality products on-demand instead of buying them at a store, then driving down the cost of new printing technologies is the first step.

Editors' Recommendations

Drew Prindle
Former Digital Trends Contributor
Drew Prindle is an award-winning writer, editor, and storyteller who currently serves as Senior Features Editor for Digital…
3D-printing technique produces tiny, highly detailed objects in seconds
The new fast 3D printing technique developed by researchers at EPFL.

The new fast 3D printing technique developed by researchers at EPFL. Ecole Polytechnique Federale de Lausanne

3D printing has incredible potential for both research and home uses, but it has some limitations. The current technology takes some time to produce an object, and it produces hard structures only. But now, researchers from the Swiss Federal Institute of Technology Lausanne (EPFL) have come up with a method for printing highly-precise miniature objects with different textures.

Read more
This 3D-printed four-legged robot is ready to take on Spot — at a lower price
3d printed ghost robotics origin

New Spirit 40: First Steps & Quick Run

Most people reading this will be familiar with four-legged robots such as the dog-inspired Spot robot developed by Boston Dynamics or Swiss robotics company ANYbotics’ ANYmal. But while there’s no doubt that such robots are supremely impressive, they’re also expensive -- which could limit their application in certain domains.

Read more
3D-printed replica of Michelangelo’s David statue is less than 1mm tall
3d printed david statue poppy seed

Towering in at a colossal 17-feet tall, Michelangelo’s David statue is a spectacular work of art. Well, it turns out that it’s no less impressive when it’s under one millimeter in size -- as experts from 3D-printing company Exaddon and the Laboratory of Biosensors and Bioelectronics at ETH in Zürich, Switzerland recently made clear.

In a dazzling demonstration, the collaborators teamed up to re-create the iconic David statue at two different (although both exceptionally tiny) scales. One was scaled down to 1:10,000, while the other was miniaturized even further to a scale of only 1:70,000. To put that pair of figures in context, the first one is around the same size as a poppy seed, just under 1 millimeter. The second one is around a tenth of a millimeter. Both are recognizable as the David statue, although the smaller of the two loses quite a few of the details of its much larger sibling. At that size, it’s hard to blame it too much, though!

Read more