Skip to main content

LIGO observatory sees its 2nd-ever neutron star collision — and it was massive

Artist's rendition of a binary neutron star merger.
Artist’s rendition of a binary neutron star merger. National Science Foundation/LIGO/Sonoma State University/A. Simonnet

The Laser Interferometer Gravitational-wave Observatory (LIGO), famous for the first detection of gravitational waves, has made another exciting observation. It has observed a pair of neutron stars smashing into each other, for only the second time in its history.

The first observation of neutron stars colliding happened in August 2017 and was notable for showing that both gravitational waves and light were generated by the event. The more recent observation of a neutron star collision didn’t include any light, though it did result in the detection of gravitational waves caused by the collision of two massive bodies.

Even by the standards of neutron stars, the two bodies which collided were heavy. “From conventional observations with light, we already knew of 17 binary neutron star systems in our own galaxy and we have estimated the masses of these stars,” Ben Farr, a LIGO team member based at the University of Oregon, said in a statement. “What’s surprising is that the combined mass of this binary is much higher than what was expected.”

Simulation of the neutron star coalescence GW190425

The combined mass of the two bodies is 3.4 times the mass of our sun, which was surprising as the other binary neutron star systems we have observed previously had only been up to 2.9 times the mass of the sun. This extra mass could be explained if one of the pair of bodies was actually a black hole rather than a neutron star, but it would have to be an exceedingly small black hole for the math to work out. The LIGO scientists think it’s much more likely that they observed two neutron stars colliding.

The scientists are interested in how the two heavy neutron stars formed a binary pair. “What we know from the data are the masses, and the individual masses most likely correspond to neutron stars,” Surabhi Sachdev, a LIGO team member based at Penn State, said in the statement. “However, as a binary neutron star system, the total mass is much higher than any of the other known galactic neutron star binaries. And this could have interesting implications for how the pair originally formed.”

Currently, there are two main theories for how neutron stars form into pairs. The first theory is that star systems develop with two stars at their center, then both stars die and become neutron stars. The second theory is that the two neutron stars develop separately and then come together in densely packed regions of space to form a pair. Scientists still aren’t sure which scenario is more likely or which one led to the neutron binary they observed colliding, so they are hoping to collect more data to investigate this question.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more
What comes after Webb? NASA’s next-generation planet-hunting telescope
An illustration shows how NASA's Habitable Worlds Observatory would measure the atmosphere of distant planets.

When it comes to building enormous, complex space telescopes, agencies like NASA have to plan far in advance. Even though the James Webb Space Telescope only launched recently, astronomers are already busy thinking about what will come after Webb — and they've got ambitious plans.

The big plan for the next decades of astronomy research is to find habitable planets, and maybe even to search for signs of life beyond Earth. That's the lofty goal of the Habitable Worlds Observatory, a space telescope currently in the planning phase that is aimed at discovering 25 Earth-like planets around sun-like stars.

Read more