Skip to main content

LIGO observatory sees its 2nd-ever neutron star collision — and it was massive

Artist's rendition of a binary neutron star merger.
Artist’s rendition of a binary neutron star merger. National Science Foundation/LIGO/Sonoma State University/A. Simonnet

The Laser Interferometer Gravitational-wave Observatory (LIGO), famous for the first detection of gravitational waves, has made another exciting observation. It has observed a pair of neutron stars smashing into each other, for only the second time in its history.

Recommended Videos

The first observation of neutron stars colliding happened in August 2017 and was notable for showing that both gravitational waves and light were generated by the event. The more recent observation of a neutron star collision didn’t include any light, though it did result in the detection of gravitational waves caused by the collision of two massive bodies.

Even by the standards of neutron stars, the two bodies which collided were heavy. “From conventional observations with light, we already knew of 17 binary neutron star systems in our own galaxy and we have estimated the masses of these stars,” Ben Farr, a LIGO team member based at the University of Oregon, said in a statement. “What’s surprising is that the combined mass of this binary is much higher than what was expected.”

Simulation of the neutron star coalescence GW190425

The combined mass of the two bodies is 3.4 times the mass of our sun, which was surprising as the other binary neutron star systems we have observed previously had only been up to 2.9 times the mass of the sun. This extra mass could be explained if one of the pair of bodies was actually a black hole rather than a neutron star, but it would have to be an exceedingly small black hole for the math to work out. The LIGO scientists think it’s much more likely that they observed two neutron stars colliding.

The scientists are interested in how the two heavy neutron stars formed a binary pair. “What we know from the data are the masses, and the individual masses most likely correspond to neutron stars,” Surabhi Sachdev, a LIGO team member based at Penn State, said in the statement. “However, as a binary neutron star system, the total mass is much higher than any of the other known galactic neutron star binaries. And this could have interesting implications for how the pair originally formed.”

Currently, there are two main theories for how neutron stars form into pairs. The first theory is that star systems develop with two stars at their center, then both stars die and become neutron stars. The second theory is that the two neutron stars develop separately and then come together in densely packed regions of space to form a pair. Scientists still aren’t sure which scenario is more likely or which one led to the neutron binary they observed colliding, so they are hoping to collect more data to investigate this question.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Star Wars legend Ian McDiarmid gets questions about the Emperor’s sex life
Ian McDiarmid as the Emperor in Star Wars: The Rise of Skywalker.

This weekend, the Star Wars: Revenge of the Sith 20th anniversary re-release had a much stronger performance than expected with $25 million and a second-place finish behind Sinners. Revenge of the Sith was the culmination of plans by Chancellor Palpatine (Ian McDiarmid) that led to the fall of the Jedi and his own ascension to emperor. Because McDiarmid's Emperor died in his first appearance -- 1983's Return of the Jedi -- Revenge of the Sith was supposed to be his live-action swan song. However, Palpatine's return in Star Wars: Episode IX -- The Rise of Skywalker left McDiarmid being asked questions about his character's comeback, particularly about his sex life and how he could have a granddaughter.

While speaking with Variety, McDiarmid noted that fans have asked him "slightly embarrassing questions" about Palpatine including "'Does this evil monster ever have sex?'"

Read more
Waymo and Toyota explore personally owned self-driving cars
Front three quarter view of the 2023 Toyota bZ4X.

Waymo and Toyota have announced they’re exploring a strategic collaboration—and one of the most exciting possibilities on the table is bringing fully-automated driving technology to personally owned vehicles.
Alphabet-owned Waymo has made its name with its robotaxi service, the only one currently operating in the U.S. Its vehicles, including Jaguars and Hyundai Ioniq 5s, have logged tens of millions of autonomous miles on the streets of San Francisco, Los Angeles, Phoenix, and Austin.
But shifting to personally owned self-driving cars is a much more complex challenge.
While safety regulations are expected to loosen under the Trump administration, the National Highway Traffic Safety Administration (NHTSA) has so far taken a cautious approach to the deployment of fully autonomous vehicles. General Motors-backed Cruise robotaxi was forced to suspend operations in 2023 following a fatal collision.
While the partnership with Toyota is still in the early stages, Waymo says it will initially study how to merge its autonomous systems with the Japanese automaker’s consumer vehicle platforms.
In a recent call with analysts, Alphabet CEO Sundar Pichai signaled that Waymo is seriously considering expanding beyond ride-hailing fleets and into personal ownership. While nothing is confirmed, the partnership with Toyota adds credibility—and manufacturing muscle—to that vision.
Toyota brings decades of safety innovation to the table, including its widely adopted Toyota Safety Sense technology. Through its software division, Woven by Toyota, the company is also pushing into next-generation vehicle platforms. With Waymo, Toyota is now also looking at how automation can evolve beyond assisted driving and into full autonomy for individual drivers.
This move also turns up the heat on Tesla, which has long promised fully self-driving vehicles for consumers. While Tesla continues to refine its Full Self-Driving (FSD) software, it remains supervised and hasn’t yet delivered on full autonomy. CEO Elon Musk is promising to launch some of its first robotaxis in Austin in June.
When it comes to self-driving cars, Waymo and Tesla are taking very different roads. Tesla aims to deliver affordability and scale with its camera, AI-based software. Waymo, by contrast, uses a more expensive technology relying on pre-mapped roads, sensors, cameras, radar and lidar (a laser-light radar), that regulators have been quicker to trust.

Read more
Uber partners with May Mobility to bring thousands of autonomous vehicles to U.S. streets
uber may mobility av rides partnership

The self-driving race is shifting into high gear, and Uber just added more horsepower. In a new multi-year partnership, Uber and autonomous vehicle (AV) company May Mobility will begin rolling out driverless rides in Arlington, Texas by the end of 2025—with thousands more vehicles planned across the U.S. in the coming years.
Uber has already taken serious steps towards making autonomous ride-hailing a mainstream option. The company already works with Waymo, whose robotaxis are live in multiple cities, and now it’s welcoming May Mobility’s hybrid-electric Toyota Sienna vans to its platform. The vehicles will launch with safety drivers at first but are expected to go fully autonomous as deployments mature.
May Mobility isn’t new to this game. Backed by Toyota, BMW, and other major players, it’s been running AV services in geofenced areas since 2021. Its AI-powered Multi-Policy Decision Making (MPDM) tech allows it to react quickly and safely to unpredictable real-world conditions—something that’s helped it earn trust in city partnerships across the U.S. and Japan.
This expansion into ride-hailing is part of a broader industry trend. Waymo, widely seen as the current AV frontrunner, continues scaling its service in cities like Phoenix and Austin. Tesla, meanwhile, is preparing to launch its first robotaxis in Austin this June, with a small fleet of Model Ys powered by its camera-based Full Self-Driving (FSD) system. While Tesla aims for affordability and scale, Waymo and May are focused on safety-first deployments using sensor-rich systems, including lidar—a tech stack regulators have so far favored.
Beyond ride-hailing, the idea of personally owned self-driving cars is also gaining traction. Waymo and Toyota recently announced they’re exploring how to bring full autonomy to private vehicles, a move that could eventually bring robotaxi tech right into your garage.
With big names like Uber, Tesla, Waymo, and now May Mobility in the mix, the ride-hailing industry is evolving fast—and the road ahead looks increasingly driver-optional.

Read more