Skip to main content

Upcoming space telescope can pick out distant exoplanets against glare of stars

An optical engineer at NASA’s Jet Propulsion Laboratory, in Pasadena, California, Camilo Mejia Prada, shines a light on the interior of a testbed for an instrument called a coronagraph that will fly aboard the WFIRST space telescope. NASA/JPL-Caltech/Matthew Luem

For the last few years, NASA has been quietly working away on a new space telescope even more advanced than the Hubble Space Telescope. The Wide Field Infrared Survey Telescope (WFIRST) was announced in 2016 and will have 100 times the field of view of the Hubble. Now, NASA has shared an update on the progress of the WFIRST and in particular how its coronagraph instrument will operate.

A coronagraph is a tool for blocking out the glare of bright sunlight so fainter stars and the planets that orbit around them can be observed. NASA cheerfully describes the instrument as a pair of “starglasses,” created from a “system of masks, prisms, detectors and even self-flexing mirrors” which can block out the light from stars so it doesn’t overwhelm the faint light given off by planets. “What we’re trying to do is cancel out a billion photons from the star for every one we capture from the planet,” Jason Rhodes, a WFIRST project scientist explained in a statement.

Related Videos
WFIRST's Coronagraph Instrument

The complex WFIRST coronagraph has just completed its preliminary design review, which means the design has met requirements of schedule and budget so construction of the hardware can begin. The instrument includes two flexible mirrors that change shape in response to the movements of thousands of actuators, allowing compensation for tiny flaws in the optics. “Changes on the mirrors’ surfaces are so precise they can compensate for errors smaller than the width of a strand of DNA,” NASA explained in a blog post.

NASA has some practice with building coronagraphs, as one is also included in the James Webb Space Telescope, but the one on WFIRST will have stronger starlight suppression than the one in the James Webb. In terms of its ability to distinguish a planet from a star, “WFIRST should be two or three orders of magnitude more powerful than any other coronagraph ever flown,” according to Rhodes.

The aim is to launch WFIRST in the mid-2020s when it will be used to study topics like dark energy as well as being used to detect distant exoplanets.

Editors' Recommendations

James Webb’s MIRI instrument about to face most daunting challenge yet
MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012.

In the long process of getting ready to take its first scientific observations this summer, the James Webb Space Telescope now has three out of its four instruments aligned to its mirrors. The fourth instrument, MIRI or the mid-infrared instrument, will take a little longer because it uses a different type of sensor which needs to be kept at an extremely low temperature -- and achieving this temperature requires, perhaps surprisingly, both a cooler and a heater. Now, NASA has shared an update on the process of getting MIRI down to temperature and ready for operations.

Webb's three other instruments are already at their chilly operating temperatures of 34 to 39 kelvins, but MIRI needs to get all the way down to 7 kelvins. To achieve that, the instrument has a special cryocooler system. “Over the last couple of weeks, the cryocooler has been circulating cold helium gas past the MIRI optical bench, which will help cool it to about 15 kelvins," cryocooler specialists Konstantin Penanen and Bret Naylor at NASA's Jet Propulsion Laboratory wrote. "Soon, the cryocooler is about to experience the most challenging days of its mission. By operating cryogenic valves, the cryocooler will redirect the circulating helium gas and force it through a flow restriction. As the gas expands when exiting the restriction, it becomes colder, and can then bring the MIRI detectors to their cool operating temperature of below 7 kelvins."

Read more
Telescopes on balloons could be a game-changer for astronomy
The SuperBIT balloon in flight.

When you think of innovative new space launch concepts, you likely think of rockets like SpaceX’s Starship or NASA’s Space Launch System carrying telescopes or robotic explorers out into orbit and beyond. And certainly, rockets are here to stay, remaining the principal way of carrying things beyond Earth’s gravity. However, an alternative and cheaper option might come from a much older form of technology: Balloons.

Balloons filled with hot air or gas have been lofted up into the skies for centuries, with records of the ancient Chinese military using balloons for signaling as far back as the 3rd century AD, and crewed balloon flight beginning in Europe in the 1780s. And they have been used in astronomy research as well, like the U.S.’s Project Stargazer of the 1960s which sent two men and a telescope 82,000 feet (25 kilometers) into the air in a high-altitude balloon to observe the stars.

Read more
NASA’s Mars helicopter will fly furthest yet in next flight
NASA's Ingenuity helicopter.

In the year since NASA’s Mars helicopter first hovered above the martian surface to become the only aircraft to achieve powered, controlled flight on another planet, Ingenuity has taken 23 additional flights.

Now the mission team at NASA’s Jet Propulsion Laboratory (JPL) is prepping the 4-pound, 19-inch-high helicopter for a record-breaking flight of 704 meters, a distance that will smash its current record by 77 meters.

Read more