Skip to main content

Why there aren’t cameras to capture the unfolding of James Webb Space Telescope

With the final deployment of the James Webb Space Telescope today, you might be disappointed to learn there won’t be any photos or videos of the telescope unfolding.

When the Perseverance rover landed on Mars last year, the public was treated to stunning images of the rover being lowered from its descent stage onto the planet’s surface. There was even a video of the landing, showing this remarkable event from multiple angles captured by cameras placed all over the rover’s landing system.

Recommended Videos

So how come there aren’t similar cameras showing the unfolding of the James Webb Space Telescope?

In a recent blog post, NASA revealed that they did consider putting cameras on the telescope to cover its deployment. These cameras could also have been useful for diagnosing any problems which occurred during the telescope’s deployment or operations. However, when the proposal was examined in-depth, the team found that it was not going to work.

“Adding cameras to watch an unprecedently complicated deployment of such a precious spacecraft as Webb sounds like a no-brainer, but in Webb’s case, there’s much more to it than meets the eye,” said Paul Geithner, deputy project manager-technical for the Webb telescope at NASA’s Goddard Space Flight Center, in the post. “It’s not as straightforward as adding a doorbell cam or even a rocket cam.”

There are two big challenges to having cameras on Webb. The first is that, because the telescope unfolds in an elaborate process, there wouldn’t be one single location where a camera could observe all of the deployment processes. There would have to be multiple cameras, and the wiring for these would have to run across the telescope, potentially causing problems.

The other big issue is one of light from the sun. Webb is designed to reflect sunlight away from its sun-facing side, so it doesn’t get too hot, but that means that this side is very shiny which would cause constant glare for cameras. On the cold side of the telescope, there wouldn’t be enough light for cameras to see anything, and these cameras would have to work at very low temperatures.

In the end, the engineers decided that Webb’s other sensors would be more useful than cameras to get a picture of the condition of the telescope.

“Webb’s built-in sense of ‘touch’ (for example, switches and various mechanical, electrical, and temperature sensors) provides much more useful information than mere surveillance cameras can,” said Geithner.

“We instrumented Webb like we do many other one-of-a-kind spacecraft, to provide all the specific information necessary to inform engineers on Earth about the observatory’s health and status during all activities.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more