Skip to main content

Newly created superfluid defies physics, accelerates backward when you push it

scientists negative mass superfluid wsu 11406305 l
Alexander Raths/123RF
It sounds impossible, but apparently it’s not: Scientists at Washington State University have created a superfluid that appears to move counter to the laws of physics.

That means that when you push it, it doesn’t accelerate in that direction, but rather accelerates backward instead.

Related Videos

“We have demonstrated that lasers can be used to design systems in which cold atoms behave as if they have a negative mass, [meaning that] if you push or pull them, they accelerate in the wrong direction,” Michael Forbes, assistant professor of physics and astronomy, told Digital Trends.

The fluid was created by reducing the temperature of rubidium atoms to almost absolute zero, at which molecules start to behave more like waves. This state was predicted by Satyendra Nath Bose and Albert Einstein in what is called the Bose-Einstein condensate. Washington State scientists then used lasers to interfere with the rubidium atoms to change the way they spin, which resulted in the effect of making them behave like they had a negative mass.

The work was described in a newly published article in the journal Physical Review Letters, where it is was given the recommendation of “Editor’s Suggestion.”

For now, the breakthrough remains unlikely to immediately affect your day to day life. You’re unlikely, for instance, to immediately get a superfluid desk toy that resists efforts to move in the direction you push it. As Forbes said, “These systems are [only] about 100 microns across. To realize the negative effective mass, one needs to embed the material in lasers, so at present, it is not obvious how to scale this up.”

That doesn’t mean there aren’t potential use cases, though.

“The field of cold atoms is advancing at an extremely rapid pace,” he continues. “Many of [these] cutting-edge experimental techniques quickly find practical application in quantum technologies such as high precision quantum sensing, quantum cryptography, and quantum computation. Having controllable access to a fluid that behaves as if it has negative mass may have some very interesting applications.”

One is that it provides a new tool for studying exotic material such as found in neutron stars, the early universe, and inside nuclei. These are systems which are extremely difficult to study experimentally, but could be simulated in a lab using cold atoms. The results may help refine theories related to nuclear physics — thereby shedding light on massive questions like the origin of the elements in our universe.

“Nuclear reactions have more terrestrial applications, but modelling nuclei is tricky,” Forbes said. “Unlike neutron stars, which are held together by gravity, nuclei hold themselves together. Cold atoms, however, need to have an external pressure to keep them together. With this negative mass effect, the cold atoms experience a form of self-trapping that we hope to use to study the behavior of self-bound systems.”

Editors' Recommendations

Researchers at the University of Washington just developed a real-life ‘freeze ray’
researchers at uw develop laser which refrigerates liquids uwfreezeray2

In a groundbreaking study soon to be published by the National Academy of Sciences, researchers at the University of Washington have successfully developed a laser capable of refrigerating liquids instead of heating them. By making use of an infrared laser, the team was able to cool a single microscopic crystal by an astounding 36 degrees Fahrenheit, accomplishing the task of laser-refrigeration in real-life conditions for the first time.

While the breakthrough certainly wasn't made to satisfy evil villains the world over, the technology does have the potential for a wide range of applications. According to a published announcement from UW itself, the experimental tech may allow for more efficient information processing, possessing the ability to prevent overheating in microchips by cooling specific parts. Moreover, the university posited that scientists could also use it to "precisely cool" portions of cells as they divide or repair themselves, allowing for an incredible opportunity to see exactly how cells work.

Read more
Optical illusions could help us build the next generation of AI
Artificial intelligence digital eye closeup.

You look at an image of a black circle on a grid of circular dots. It resembles a hole burned into a piece of white mesh material, although it’s actually a flat, stationary image on a screen or piece of paper. But your brain doesn’t comprehend it like that. Like some low-level hallucinatory experience, your mind trips out; perceiving the static image as the mouth of a black tunnel that’s moving towards you.

Responding to the verisimilitude of the effect, the body starts to unconsciously react: the eye’s pupils dilate to let more light in, just as they would adjust if you were about to be plunged into darkness to ensure the best possible vision.

Read more
Meta wants to supercharge Wikipedia with an AI upgrade
the wikipedia logo on a pink background

Wikipedia has a problem. And Meta, the not-too-long-ago rebranded Facebook, may just have the answer.

Let’s back up. Wikipedia is one of the largest-scale collaborative projects in human history, with more than 100,000 volunteer human editors contributing to the construction and maintenance of a mind-bogglingly large, multi-language encyclopedia consisting of millions of articles. Upward of 17,000 new articles are added to Wikipedia each month, while tweaks and modifications are continuously made to its existing corpus of articles. The most popular Wiki articles have been edited thousands of times, reflecting the very latest research, insights, and up-to-the-minute information.

Read more