We’ve seen the light! Li-Fi is the future of wireless connectivity

Even if you’ve never heard of Li-Fi before, you can probably work out what it is. Instead of accessing the Internet wirelessly using radio frequencies, like Wi-Fi does, you use the visible light spectrum. It’s a very exciting technology that has been on our radar for a few years now, ever since Professor Harald Hass gave a TED talk on the topic back in 2011.

This year at Mobile World Congress we sat down with PureLi-Fi COO, Harald Burchardt, and got to see Li-Fi in action for ourselves. You could say we’ve seen the light.

“The way that Li-Fi works is that we use LED lights and turn them into wireless transmitters,” Burchardt told Digital Trends. “Li-Fi, as you can tell by the name, is a service that’s akin to Wi-Fi, except that we use LED light, and specifically the lighting medium, to communicate data wirelessly.”

“The way that Li-Fi works is that we use LED lights and turn them into wireless transmitters.”

Professor Harald Hass started researching this back in 2003, because he saw the upcoming spectrum crunch. He correctly predicted that the lack of radio frequency spectrum for mobile devices would become a real problem. (These days, it’s very difficult to get a connection on some Wi-Fi frequencies if you’re in an urban area.) Around the same time, new LED light technology hit the market, and Hass saw an opportunity to bring the two together. He found a way to use these electronic lighting components for high speed data communication, without interfering with existing radio frequency infrastructures.

PureLi-Fi was founded in 2012 with the goal of commercializing the technology. The demo area it set up at MWC consisted of three Li-Fi access points. These were roughly brick-sized boxes attached to LED downlighters, covering an area of around 20 square meters. The boxes effectively turn the lights into wireless antennas.

To receive data from these lights you need a dongle that acts as a wireless modem of sorts, which is plugged into your laptop or tablet. The dongles were a bit smaller than a pack of cards and plug in via USB, which also provides the power. There’s a sensor that catches the light coming down and then an infrared component that sends a signal back up. The overhead lights also have a networking component, so it’s possible for multiple users to connect to a single light source, and to move from one light source to another without losing your connection.

The Li-Fi connection pops up in exactly the same way an available Wi-Fi network does. Burchardt connected his laptop to it and began to stream a YouTube video. It worked perfectly with no buffering in sight, even when he walked around between the lights.

The speed of that system is 40Mbps, both downloading from the light and uploading from the dongle. The light has a 60-degree field of view which provides a coverage area of 9 to 10 square meters. The maximum data rate reduces slightly if you move to the edges of the light, dropping to around 75 percent, but the light can bounce off objects and still deliver a signal, it’ll just be slower the further you are from the main beam.

Burchardt pointed out that you can’t fit more than one Wi-Fi access point into a similar sized area, and if you do, the information would bleed everywhere around. That highlights two key advantages of Li-Fi: you can transfer more data in a localized area, and it’s more secure.

Li-Fi Prototype: The inventor of light-based ‘Li-Fi’ Internet has completed the first working prototype

“The more Li-Fi enabled lights you have in an area, the higher your total capacity is,” explained Burchardt. “Light also doesn’t penetrate through walls the same way Wi-Fi does, so it allows you to create networks with much higher security.”

Take a look at available Wi-Fi networks on your phone in the typical apartment or office and you’ll generally see a lot of options. Not only is that a huge amount of interference, but it’s also a security risk. With Li-Fi you can contain your network to your physical location, and that’s proving to be a major attraction for financial institutions, government agencies, and research institutes, but it should also appeal to anyone who values their privacy.

As it stands, PureLi-Fi is adding this functionality to off-the-shelf lightbulbs and plugging dongles into devices to receive data, but the longterm goal is to get the technology inside devices and lighting grids.

“We would be looking, ideally, at turning every light into its own access point,” said Burchardt. “We’re working with a French lighting company called Lucibel on integrating the access point into the luminare itself.”

The hope is that, as the technology matures and becomes more affordable, it will be assimilated into LED bulbs, making it easy to adopt. The other side of the problem is the receiver.

“In order to make this a mass market proposition we need to minimize the dongle into an ASIC (application-specific integrated circuit) or SoC module,” explained Burchardt. “So it can be incorporated into all manner of devices whether it be smartphones, tablets, laptops, accessories, wearables, or any other kind of electronic devices.”

Li-Fi
Simon Hill/Digital Trends
Simon Hill/Digital Trends

On the other hand, there are a lot of different ways the tech could connect without noticeably impinging the design of our devices. It could be something that sits under the display of your smartphone, for example.

Li-Fi will also be able to offer much greater bandwidth as lighting technology improves. The illumination LEDs they use right now are designed to be low bandwidth, because they’re supposed to deliver constant illumination at high power. But the industry is moving toward RGB, where each individual channel is higher bandwidth, and there are three to choose from. You can also add a number of different colors to mulitplex that over different channels.

Going further, laser LEDs have already been incorporated in BMW i8 headlights, for very long range communication, and these have even higher bandwidths.

“Once those kinds of light fixtures are available, coupled with low cost, low power, high frequency sensors, that’s when we can really unlock the true potential of Li-Fi,” explained Burchardt. “Delivering multiple tens of GHzs per second from a single fixture.”

Li-Fi can already send 10 to 50 times the amount of data that Wi-Fi can in a single area, depending on the exact setup, but laser LEDs could boost that as high as 100 times.

Li-Fi can already send 10 to 50 times the amount of data that Wi-Fi can in a single area.

It’s worth remembering that Li-Fi is not aiming to be a direct replacement for Wi-Fi and cellular networks, it’s a complementary technology that will work well in certain situations.

“In the same way that a cellular communication system allows you to roam over an entire city or an enterprise Wi-Fi network allows you to roam over a campus, a Li-Fi network allows you to roam through a room or through any lighting infrastructure, which is almost any indoor area,” Burchardt told us.

Li-Fi adoption could lift a great deal of strain from our existing networks and free up bandwidth for outdoors, or for people with older devices indoors. It seems likely that big businesses will lead adoption here and it may be quite some time before we see this kind of technology in home electronics, but it’s definitely coming.

“This technology will be everywhere in 10 to 15 years, it will be incorporated into every light and every device,” asserted Burchardt. “PureLi-Fi’s challenge is to be the one to do it, and ideally to do it in a shorter time frame than that.”

Mobile

It’s 2025. How has 5G changed our lives? We asked experts to predict the future

2025 is the year that mobile carriers say 5G goes mainstream. How will the technology change, revolutionize, or make obsolete the things we do today? We asked futurists to give us an idea of our future 5G connected world.
Mobile

Small companies may differ, but all need good, reasonably priced cell service

There's no single cell phone plan that will suit every small company, but with numerous high quality plans from a variety of major carriers, you will find one that suits your needs. We pick some plans and outline what you need to know.
Mobile

Don't let your pet go missing -- these tracker-app combos help keep them safe

Caring pet guardians now use GPS, Wi-Fi, or Bluetooth trackers to track a pet's location and monitor eating, sleeping, activity levels, and overall health and fitness. We've rounded up some of the best to help you keep your pets safe.
Deals

Amazon cuts 50% off the Currant Wi-Fi Smart Outlet with energy monitoring

The Currant Wi-Fi Smart Outlet brings you more than convenience – it helps you save on energy costs thanks to its energy monitoring feature. Get it for 50% less than its usual $60 on Amazon today.
Emerging Tech

Astro the dog-inspired quadruped robot can sit, lie down, and… learn?

Move over Spot! Researchers from Florida Atlantic University have built a new dog robot called Astro. Thanks to deep learning technology, it promises to be able to learn just like a real dog.
Health & Fitness

We spit in a ton of test tubes to find the best and most unique DNA tests

DNA tests aren’t just limited to ancestry. You can test for your risks for certain diseases, the best workouts and diets for your health and fitness, and more.
Emerging Tech

Awesome Tech You Can’t Buy Yet: Racing drones and robotic ping pong trainers

Check out our roundup of the best new crowdfunding projects and product announcements that hit the web this week. You may not be able to buy this stuff yet, but it sure is fun to gawk!
Emerging Tech

Artificial tree promises to suck up as much air pollution as a small forest

Startup Biomitech has developed an artificial tree that it claims is capable of sucking up as much air pollution as 368 real trees. It could be a game-changer for cities with limited free space.
Emerging Tech

Mars 2020 rover now has a rotating array of drill bits for sampling Martian rock

Most the key components in the Mars 2020 rover are installed and ready to go. The next phase of construction was to install the bit carousel, an important mechanism for the gathering and sorting of samples from the Martian surface.
Emerging Tech

NASA selects landing site candidates for OSIRIS-Rex to sample asteroid Bennu

Last year, the OSIRIS-REx craft arrived at asteroid Bennu, from which it will collect a sample from the asteroid to be brought back to Earth. Now, the NASA team has selected four potential sites to choose from for the sampling mission.
Emerging Tech

NASA wants to send two more missions to Mars to collect rock samples

With its Mars 2020 mission, NASA hopes to collect samples from the surface of the planet. The challenge is how to get those samples back to Earth. Now, NASA has revealed its plans for two followup missions to Mars.
Emerging Tech

Eric Geusz: Apple engineer by day, spaceship designer by night

An Apple software engineer by day, artist Eric Geusz spends his nights drawing everyday household objects as amazing, science fiction-style spaceships. Check out the impressive results.
Emerging Tech

The black hole at the center of our galaxy is flaring and no one knows why

At the heart of our galaxy lies a supermassive black hole, Sagittarius A*. Normally this giant monster is relatively docile, but recently it's been a hotbed of unexpected activity, rapidly glowing 75 times brighter than normal.
Emerging Tech

SpaceIL’s crashed lander may have sent thousands of tardigrades to the moon

When the SpaceIL craft Beresheet crashed into the moon earlier this year, it left more than just an impact mark. Thousands of micro-animals called tardigrades were along for the ride and may have survived the crash.