James Webb Space Telescope fully aligned and capturing crisp images

Since the launch of the James Webb Space Telescope in December last year, engineers have been working to deploy the telescope’s hardware, then align both its mirrors and its instruments. Now, that months-long process is complete, and the telescope is confirmed to be fully aligned. NASA and the European Space Agency have shared an image showing the sharpness check of all of Webb’s instruments, showing that they are all crisp and properly focused.

“Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus,” the European Space Agency writes. “For this test, Webb pointed at part of the Large Magellanic Cloud, a small satellite galaxy of the Milky Way, providing a dense field of hundreds of thousands of stars across all the observatory’s sensors. The sizes and positions of the images shown here depict the relative arrangement of each of Webb’s instruments in the telescope’s focal plane, each pointing at a slightly offset part of the sky relative to one another.”

Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus. NASA/STScI

The four instruments in question are the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec), and the Near-Infrared Imager and Slitless Spectrograph/Fine Guidance Sensor (NIRISS/FGS). Those are three imaging instruments and one spectrograph (an instrument for detecting the composition of objects by separating the light they give off), but the spectrograph can be used to take images as well — like the images shown above which are used for calibration and target selection. If you look at the NIRSpec image you’ll see black bands across it, which are caused by its microshutter array which allows it to open and close tiny windows so that the instrument can observe up to 100 objects at the same time.

Recommended Videos

All four of the instruments are pointed at the same target so that engineers could check they were all as sharp and accurate as they need to be. And the results are even better than the engineers hoped, resulting in a high degree of image quality which means the instruments are diffraction-limited — meaning that they are getting the maximum amount of detail possible for the size of the telescope.

With the alignments complete, now the team can begin commissioning each instrument. That involves configuring and checking parts of the instruments such as the masks and filters to make sure they are ready for science operations. There are also some final telescope calibration processes required, like checking that the telescope remains at a steady temperature when moving from one target to another. Once all of this is done, the telescope is scheduled to begin science operations this summer.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See what James Webb and Hubble are observing right now with this tool

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
Astronaut captures stunning images of a snowy Grand Canyon

In the final days of his six-month stint aboard the International Space Station (ISS), Danish astronaut Andreas Mogensen took some time out of his science work to snap some striking photos of a snow-covered Grand Canyon.

The images were captured from the station in recent days as it orbited Earth at an altitude of around 250 miles.

Read more
This famous supernova remnant is hiding a secret

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more