Skip to main content

This A.I. goes against the grain, cleans noisy images with a single shot

Research at NVIDIA: AI Can Now Fix Your Grainy Photos by Only Looking at Grainy Photos

Low-light images are often plagued by grain, small dots created by increasing the camera’s sensitivity or ISO that obscure the image’s finer details. But researchers from Nvidia, Aalto University, and the Massachusetts Institute of Technology have trained a computer to eliminate the grain using nothing but the original photo and software. 

Recommended Videos

While earlier artificial intelligence programs can clean up a noisy image, these programs required two photos, one full of grain and one without. The new Nvidia research, published on Monday, July 9, only needs one grainy photo to create a cleaner image using A.I.

The researchers trained the program by feeding the computer 50,000 pairs of images. The pairs were almost identical images, except each image in the pair had a different randomized pattern of grain added with software. Earlier research used image pairs, but one image was a clean, low noise file. The research, the group wrote, proves that it’s possible to reduce grain in an image without using a low-noise image as a reference point.

To test the program, the group used both traditional images and even medical MRI scans, suggesting the technology could be used for more than just cleaning up low-light photos. The team used images with added noise in order to have a clean reference image to see how well the A.I. performed. The resulting images had less noise than the original and took only milliseconds to correct. In the samples the researchers shared, the A.I.-treated program was a bit softer than the original reference image, but the adjusted images no longer had distracting levels of grain.

The researchers point out that the program, of course, can’t find details that aren’t there or were too obscured by the noise, but the program allows images to be adjusted without a clean reference photo. “There are several real-world situations where obtaining clean training data is difficult: Low-light photography (e.g., astronomical imaging), physically based rendering, and magnetic resonance imaging,” the researchers wrote. “Our proof-of-concept demonstrations point the way to significant potential benefits in these applications by removing the need for potentially strenuous collection of clean data. Of course, there is no free lunch — we cannot learn to pick up features that are not there in the input data — but this applies equally to training with clean targets.”

The research will be presented at the International Conference on Machine Learning in Sweden later this week — but like most new research, there is no word yet on if and when the technology may be widely accessible.

Hillary K. Grigonis
Hillary never planned on becoming a photographer—and then she was handed a camera at her first writing job and she's been…
Nvidia lowers the barrier to entry into A.I. with Fleet Command and LaunchPad
laptop running Nvidia Fleet Command software.

Nvidia is expanding its artificial intelligence (A.I.) offerings as part of its continued effort to "democratize A.I." The company announced two new programs today that can help businesses of any size to train and deploy A.I. models without investing in infrastructure. The first is A.I. LaunchPad, which gives enterprises access to a stack of A.I. infrastructure and software, and the second is Fleet Command, which helps businesses deploy and manage the A.I. models they've trained.

At Computex 2021, Nvidia announced the Base Command platform that allows businesses to train A.I. models on Nvidia's DGX SuperPod supercomputer.  Fleet Command builds on this platform by allowing users to simulate A.I. models and deploy them across edge devices remotely. With an Nvidia-certified system, admins can now control the entire life cycle of A.I. training and edge deployment without the upfront cost.

Read more
IBM’s A.I. Mayflower ship is crossing the Atlantic, and you can watch it live
Mayflower Autonomous Ship alone in the ocean

“Seagulls,” said Andy Stanford-Clark, excitedly. “They’re quite a big obstacle from an image-processing point of view. But, actually, they’re not a threat at all. In fact, you can totally ignore them.”

Stanford-Clark, the chief technology officer for IBM in the U.K. and Ireland, was exuding nervous energy. It was the afternoon before the morning when, at 4 a.m. British Summer Time, IBM’s Mayflower Autonomous Ship — a crewless, fully autonomous trimaran piloted entirely by IBM's A.I., and built by non-profit ocean research company ProMare -- was set to commence its voyage from Plymouth, England. to Cape Cod, Massachusetts. ProMare's vessel for several years, alongside a global consortium of other partners. And now, after countless tests and hundreds of thousands of hours of simulation training, it was about to set sail for real.

Read more
Can A.I. beat human engineers at designing microchips? Google thinks so
google artificial intelligence designs microchips photo 1494083306499 e22e4a457632

Could artificial intelligence be better at designing chips than human experts? A group of researchers from Google's Brain Team attempted to answer this question and came back with interesting findings. It turns out that a well-trained A.I. is capable of designing computer microchips -- and with great results. So great, in fact, that Google's next generation of A.I. computer systems will include microchips created with the help of this experiment.

Azalia Mirhoseini, one of the computer scientists of Google Research's Brain Team, explained the approach in an issue of Nature together with several colleagues. Artificial intelligence usually has an easy time beating a human mind when it comes to games such as chess. Some might say that A.I. can't think like a human, but in the case of microchips, this proved to be the key to finding some out-of-the-box solutions.

Read more