Skip to main content

Scientists find distant planet that’s so hot iron would evaporate there

Europe’s CHEOPS satellite, launched in December last year, has uncovered details about its first exoplanet: An extreme world that is one of the hottest planets ever studied, where even metals like iron would evaporate and turn into gas.

The planet, named WASP-189 b, is of a type called an ultra-hot Jupiter, because it is a gas giant like Jupiter and it is (you guessed it) ultra-hot.

Recommended Videos

The planet orbits 20 times closer to its star than Earth does to the sun, zipping around in a year which lasts just 2.7 days. Not only does it orbit extremely close to its star, but that star itself is also incredibly hot, being over 2,000 degrees Celsius hotter than the sun. In fact, the star is so hot that it would appear to glow blue.

Please enable Javascript to view this content

It was the extreme brightness of the star which allows astronomers to spot the planet, as lead author Monika Lendl of the University of Geneva, Switzerland explained: “As the planet is so bright, there is actually a noticeable dip in the light we see coming from the system as it briefly slips out of view. We used this to measure the planet’s brightness and constrain its temperature to a scorching 3,200 degrees C.”

Artist impression of WASP-189
Artist impression of exoplanet WASP-189b orbiting its host star. The system was observed by ESA’s exoplanet mission Cheops to determine key characteristics. For example, the host star is larger and more than 2000 degrees hotter than our own Sun, and so appears to glow blue. ESA

The whole system is hot, bright, and unusual. “Only a handful of planets are known to exist around stars this hot, and this system is by far the brightest,” Lendl said. “WASP-189b is also the brightest hot Jupiter that we can observe as it passes in front of or behind its star, making the whole system really intriguing.”

As well as the hot planet, the star in this system has some interesting properties which grabbed the researchers’ attention. “We also saw that the star itself is interesting — it’s not perfectly round, but larger and cooler at its equator than at the poles, making the poles of the star appear brighter,” Lendl said. “It’s spinning around so fast that it’s being pulled outwards at its equator! Adding to this asymmetry is the fact that WASP-189 b’s orbit is inclined; it doesn’t travel around the equator, but passes close to the star’s poles.”

The information about the tilted orbit of the planet was of particular interest as it suggests that at some point in its history, it was influenced by other planets or another star, pushing it into its position closer to its star. This could help to unravel the mystery of how these extremely hot gas giants form.

The findings are published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See the weather patterns on a wild, super hot exoplanet
This is an artist’s impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet’s appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.

When it comes to understanding exoplanets, or planets outside our solar system, the big challenge is in not only finding these planets, but also understanding what they are like. And one of the biggest factors that scientists are interested in is whether an exoplanet has an atmosphere and, if so, what it is composed of. But, just like with weather here on Earth, exoplanet atmospheres aren't static. So the Hubble Space Telescope was recently used for an intriguing observation -- comparing data from an exoplanet atmosphere that had previously been observed, to see how it changed over time.

Hubble looked at planet WASP-121 b, an extreme planet that is so close to its star that a year there lasts just 30 hours. Its surface temperatures are over 3,000 Kelvins, or 5,000 degrees Fahrenheit, which researchers predict would lead to some wild weather phenomena. As it is such an extreme planet, WASP-121 b is well-known and has been observed by Hubble several times over the years, beginning in 2016.

Read more
Astronomers spot rare star system with six planets in geometric formation
Orbital geometry of HD110067: Tracing a link between two neighbour planets at regular time intervals along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system together create a mesmerising geometric pattern due to their resonance-chain.

Astronomers have discovered a rare star system in which six planets orbit around one star in an elaborate geometrical pattern due to a phenomenon called orbital resonance. Using both NASA's Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency's (ESA) CHaracterising ExOPlanet Satellite (CHEOPS), the researchers have built up a picture of the beautiful, but complex HD110067 system, located 100 light-years away.

The six planets of the system orbit in a pattern whereby one planet completes three orbits while another does two, and one completes six orbits while another does one, and another does four orbits while another does three, and so one. The six planets form what is called a "resonant chain" where each is in resonance with the planets next to it.

Read more
James Webb finds that rocky planets could form in extreme radiation environment
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.

It takes a particular confluence of conditions for rocky planets like Earth to form, as not all stars in the universe are conducive to planet formation. Stars give off ultraviolet light, and the hotter the star burns, the more UV light it gives off. This radiation can be so significant that it prevents planets from forming from nearby dust and gas. However, the James Webb Space Telescope recently investigated a disk around a star that seems like it could be forming rocky planets, even though nearby massive stars are pumping out huge amounts of radiation.

The disk of material around the star, called a protoplanetary disk, is located in the Lobster Nebula, one of the most extreme environments in our galaxy. This region hosts massive stars that give off so much radiation that they can eat through a disk in as little as a million years, dispersing the material needed for planets to form. But the recently observed disk, named XUE 1, seems to be an exception.

Read more