Skip to main content

The Dragonfly rotorcraft will search Saturn’s moon Titan for signs of life

Artist's impression of Dragonfly in flight over Titan.
Artist’s impression of Dragonfly in flight over Titan. Johns Hopkins/APL

With the success of the Ingenuity helicopter on Mars, NASA is forging ahead with its plans for more flying robotic spacecraft to explore distant parts of the solar system. In 2027, it’s sending a rotorcraft called Dragonfly to explore Titan, the moon of Saturn, in the hopes of sniffing out signs of life there.

Now, the Dragonfly science team has announced the goals of their mission — including searching the moon for chemical biosignatures that could indicate life. Titan is an intriguing location to search for life because it is thought to have a liquid water ocean beneath its icy crust. As well as furthering the hunt for life beyond Earth, Dragonfly will also investigate the moon’s methane cycle and the complex chemistry of its atmosphere and surface.

“Titan represents an explorer’s utopia,” said co-author Alex Hayes, associate professor of astronomy in the College of Arts and Sciences and a Dragonfly co-investigator. “The science questions we have for Titan are very broad because we don’t know much about what is actually going on at the surface yet. For every question we answered during the Cassini mission’s exploration of Titan from Saturn orbit, we gained 10 new ones.”

The last probe to visit Titan was the Cassini–Huygens craft, launched in 1997. Though this mission was a fabulous success in terms of exploring both Saturn and its rings and moons, there is much that we still don’t know about the region. The Huygens probe entered the atmosphere of Titan to take readings in 2005, but no craft has ever explored the surface of Titan before Dragonfly.

Illustration of Dragonfly mission concept of entry, descent, landing, surface operations, and flight at Titan.
Illustration of Dragonfly mission concept of entry, descent, landing, surface operations, and flight at Titan. Johns Hopkins/APL

Titan’s weather system is intriguing, and like Earth, it has lakes, rivers, and rains, but these consist of methane rather than water. It’s possible that this methane could even host life that is chemically different from that here on Earth. To learn more, Dragonfly will land on the surface of Titan — helped along by its thick atmosphere and low gravity, which make it ideal for exploring from the air.

“What’s so exciting to me is that we’ve made predictions about what’s going on at the local scale on the surface and how Titan works as a system,” Hayes said, “and Dragonfly’s images and measurements are going to tell us how right or wrong they are.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb and Keck Observatory see clouds on Saturn’s moon Titan
Near-infrared Images of Saturn’s moon Titan, as seen by JWST on November 4, 2022 (left), followed by Keck Observatory’s NIRC2 instrument paired with adaptive optics on November 6, 2022 (middle) and November 7, 2022 (right).

Researchers using the James Webb Space Telescope and the W. M. Keck Observatory have teamed up to study Saturn's largest moon, Titan, and observe the way that clouds move around it. Early preview results of this research have now been released, which have not yet been peer-reviewed.

By bringing together space-based observations and ground-based observations, researchers were able to see how the clouds changed. Webb gathered data in the infrared using its Near-Infrared Camera (NIRCam) instrument, and Keck provided confirmation images also in the near-infrared two days later. “We were concerned that the clouds would be gone when we looked at Titan one and two days later with Keck, but to our delight there were clouds at the same positions, looking like they might have changed in shape,” said Keck researcher Imke de Pater in a statement.

Read more
How we could search for life on Saturn’s icy moon Enceladus
Saturn's geologically active moon, Enceladus.

When it comes to searching for places beyond Earth where life could thrive in our solar system, some of the most intriguing targets aren't planets but rather moons. From Jupiter's icy moons like Europa to Saturn's moon Enceladus, these places are thought to host liquid water oceans beneath thick ice crusts which could potentially support life. Now, new evidence suggests support for the habitability of Enceladus, and NASA is developing missions to travels to these distant moons and search for evidence of life.

The research about Enceladus, published in the journal PNAS, shows that there seems to be dissolved phosphorus in the moon's ocean, which is an important ingredient for life. It is used in the creation of RNA and DNA, is found in cell membranes, and is found within our bodies in out bones and teeth. By studying data from the Cassini probe, the researchers were able to create a model of the ocean of Enceladus and how minerals would dissolve in it.

Read more
Long-lost moon could explain how Saturn got its rings
Artistic rendering of the moon Chrysalis disintegrating in Saturn’s intense gravity field. The chunks of icy rock eventually collided and shattered into smaller pieces that became distributed in the thin ring we see today.

Saturn is famed for its beautiful rings, but these rings are something of a puzzle to astronomers. Originally, it was thought that they must have formed around the same time as the planet, over 4 billion years ago. But data from the Cassini spacecraft suggested the rings might be much younger than that, forming less than 100 million years ago. Now, a new study suggests that the rings could have been formed from a long-lost moon, explaining several of Saturn's peculiarities.

Saturn rotates with a tilt of 27 degrees, slightly off the plane at which it orbits the sun, and its rings are tilted too. Recently published research proposes that both of these factors can be explained by a former moon, named Chrysalis, which came close to the planet and was torn apart. Most of the moon was absorbed by the planet, but the rest of it created the stunning rings.

Read more