Skip to main content

This hot super-Earth has temperatures of 800°F and rivers of glowing lava

Artistic impression of the surface of the newly discovered hot super-Earth Gliese 486b. With a temperature of about 700 Kelvin (430 °C), the astronomers of the CARMENES collaboration expect a Venus-like hot and dry landscape interspersed with glowing lava rivers. Gliese 486b possible has a tenuous atmosphere.
Artistic impression of the surface of the newly discovered hot super-Earth Gliese 486b. With a temperature of about 700 Kelvin (430 °C), the astronomers of the CARMENES collaboration expect a Venus-like hot and dry landscape interspersed with glowing lava rivers. Gliese 486b possible has a tenuous atmosphere. RenderArea

No day or night, heat intense enough to melt lead, and glowing rivers of lava: This hellish landscape is a typical day on Gliese 486b, a recently discovered exoplanet orbiting the nearby star Gliese 486. The planet is rocky and around three times the mass of Earth, making it a type called a super-Earth. But it is so hot that the conditions there are quite different from what we’re used to.

The planet is so close to its star that a year there lasts only 1.5 Earth days. Though the star is fainter and cooler than our sun, the planet orbits just 1.5 million miles away and it is tidally locked, meaning one side of the planet always faces the star. This drives temperatures up even higher, reaching a surface temperature of 700 Kelvin (800 degrees Fahrenheit).

Related Videos

The researchers who made the discovery believe this means the planet would appear more like Venus than like Earth, with a hot and dry landscape and rivers of glowing lava. There is probably little atmosphere there, as the heat from the star would act to evaporate it away, but the planet’s gravity likely helps it to retain some atmosphere.

The potential existence of a thin but present atmosphere makes this planet an excellent candidate for research as it allows scientists to test their theories on atmospheric models for rocky planets. “The discovery of Gliese 486b was a stroke of luck,” said José A. Caballero of the Centro de Astrobiología in Spain, co-author of the paper, in a statement. “A hundred degrees hotter and the planet’s entire surface would be lava. Its atmosphere would consist of vaporized rocks. On the other hand, if Gliese 486b were a hundred degrees colder, it would have been unsuitable for follow-up observations.”

The researchers now want to use upcoming next-generation telescopes to study the planet further and to try to peer into its atmosphere to see its composition. “The proximity of this exoplanet is exciting because it will be possible to study it in more detail with powerful telescopes such as the upcoming James Webb Space Telescope and the future Extremely Large Telescopes,” said lead author Trifon Trifonov of the Max Planck Institute for Astronomy.

“We can hardly wait for the new telescopes to become available. The results will help us to understand how well rocky planets can hold their atmospheres, what they are made of, and how they influence the energy distribution on the planets.”

Editors' Recommendations

Wild exoplanet has metal clouds and rain of liquid gems
Artist's impression of the exoplanet WASP-121 b. It belongs to the class of hot Jupiters. Due to its proximity to the central star, the planet's rotation is tidally locked to its orbit around it. As a result, one of WASP-121 b's hemispheres always faces the star, heating it to temperatures of up to 3000 degrees Celsius.The night side is always oriented towards cold space, which is why it is 1500 degrees Celsius cooler there.

In the pantheon of weird exoplanets, one of the strangest has to be WASP-121 b. It's so close to its star that not only is its surface temperature estimated to be up to an unimaginable 4,600 degrees Fahrenheit, but gravitational forces are pulling the planet apart and shaping it like a football. Now, new research reveals what the weather might be like on this hellish planet, and it's just as weird as you might think.

Located 855 light-years away, the planet is a type called a hot Jupiter because it's comparable in mass to Jupiter, at 1.2 times its mass, but its diameter is nearly twice as large. One reason that the planet has such extreme conditions is that it's close to its star that it is tidally locked, meaning one side of the planet called the dayside always faces the star and has the hottest temperature, while the cooler side called the nightside always faces away from the star into space.

Read more
Peering into the atmosphere of an ultra-hot exoplanet
Artist’s impression of WASP-189b, an exoplanet orbiting the star HD 133112 which is one of the hottest stars known to have a planetary system.

Of the over 4,000 exoplanets discovered so far, one of the strangest has to be WASP-189b. This ultra-hot Jupiter orbits so close to its star that its surface temperature could be up to 3,200 degrees Celsius, which is hot enough for iron to evaporate. Now, astronomers using the CHEOPS space telescope have investigated WASP-189b's atmosphere and found that it's just as odd as the planet beneath.

It's not easy to investigate the atmosphere of an exoplanet, but in this case, the researchers were able to look at the light coming from the extremely hot nearby star. “We measured the light coming from the planet’s host star and passing through the planet’s atmosphere," lead author of the study, Bibiana Prinoth, explained in a statement. "The gases in its atmosphere absorb some of the starlight, similar to Ozone absorbing some of the sunlight in Earth’s atmosphere, and thereby leave their characteristic ‘fingerprint’. With the help of [the HARPS spectrograph], we were able to identify the corresponding substances.”

Read more
NASA’s TESS has discovered 5,000 exoplanet candidates
nas tess satellite begins exoplanet hunt orbits planet

NASA's planet-hunting satellite TESS, or the Transiting Exoplanet Survey Satellite, has passed an impressive milestone, having identified 5,000 potential exoplanets. Launched in 2018, the hard-working telescope has been used by researchers from a variety of institutions to find tell-tale indications of planets outside our solar system.

Many of the objects TESS identifies are referred to as potential exoplanets, or TESS Objects of Interest (TOIs) because it requires multiple observations to confirm that a given signal is in fact an exoplanet. Currently, of the over 5,000 candidates discovered, 176 have been confirmed as exoplanets.

Read more