Skip to main content

The final, dying outbursts of an unstable star are captured by Hubble

Earlier this year, Hubble celebrated its 31st anniversary with a release of an image of the unstable star AG Carinae. Now, Hubble researchers have returned to this star to show it from two different views, complied from observations in 2020, 2014, and 1994.

This view of AG Carinae showcases the details of the ionised hydrogen and ionised nitrogen emissions from the nebula (seen here in red).
This view of AG Carinae showcases the details of the ionized hydrogen and ionized nitrogen emissions from the nebula (seen here in red). ESA/Hubble and NASA, A. Nota, C. Britt

The first view of the star shows the ionized hydrogen and nitrogen which it emits, and which form a shell around the hot core. This shell is expanding over time as gases are thrown off.

In this image of AG Carinae, the blue demonstrates the contrasting appearance of the distribution of the dust that shines of reflected stellar light.
In this image of AG Carinae, the blue demonstrates the contrasting appearance of the distribution of the dust that shines of reflected stellar light. ESA/Hubble and NASA, A. Nota, C. Britt

The second view of the star shows how dust is distributed around the star, which is represented in blue. This dust shines brightly because it reflects the light given off by the star, and it is shaped by stellar winds which are coming from the star as well.

The star’s dramatic appearance is because it is very massive and coming to the end of its life. As it ages and uses up all of its fuel, the star becomes unstable and throws off both dust and gases.

“AG Carinae is formally classified as a Luminous Blue Variable because it is a hot (emitting blue light), brilliant star that varies in brightness,” the Hubble scientists explain. “Such stars are quite rare because few are so massive. Luminous Blue Variable stars continuously lose mass in the final stages of life. The star is waging a tug-of-war between gravity and radiation pressure to avoid self-destruction. As the star begins to run out of fuel, its radiation pressure decreases, and gravity begins to take hold. Stellar material succumbs to gravity and falls inward. It heats up and is explosively ejected into the surrounding interstellar space. This process continues until enough mass is lost and the star reaches a stable state.”

Gases are being thrown off the star at a tremendous speed of 43 miles per second, and its beautiful shell is formed from previous ejections. The shell of material that forms the nebula is around 10,000 years old and is approximately five light-years across.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble gets festive with a string of cosmic Christmas lights
The billion stars in galaxy UGC 8091 resemble a sparkling snow globe in this festive Hubble Space Telescope image from NASA and ESA (European Space Agency). The dwarf galaxy is approximately 7 million light-years from Earth in the constellation Virgo. It is considered an "irregular galaxy" because it does not have an orderly spiral or elliptical appearance. Instead, the stars that make up this celestial gathering look more like a brightly shining tangle of string lights than a galaxy.

Researchers using the Hubble Space Telescope are getting into the festive spirit with a holiday image showing a dwarf irregular galaxy called UGC 8091. Located 7 million light-years away in the constellation of Virgo, this region is a hotbed of star formation, with bright young stars illuminating the gas around them to create a sparkling mass reminiscent of Christmas lights.

It is designated an irregular galaxy because of its nonuniform shape, and a dwarf galaxy because of its small size. Unlike spiral galaxies, such as our Milky Way, or elliptical galaxies, which are smooth and have a elliptical shape, irregular galaxies can come in a variety of shapes. Often, these galaxies have been pulled into odd shapes due to gravitational forces, such as when two galaxies come close to each other and interact.

Read more
Scientists investigate star formation in the famous Whirlpool Galaxy
This illustration depicts the distribution of diazenylium molecule radiation (false colours) in the Whirlpool Galaxy, compared with an optical image. The reddish areas in the photograph represent luminous gas nebulae containing hot, massive stars traversing dark zones of gas and dust in the spiral arms. The presence of diazenylium in these dark regions suggests particularly cold and dense gas clouds.

Scientists are turning to the beautiful and famous Whirlpool Galaxy to look for areas where stars could eventually be born. By mapping out the presence of particular chemicals, they hope to learn about the conditions that are required to give birth to new stars.

Researchers have mapped out regions of cold gas within the Whirlpool Galaxy, as it is these pockets of gas that gradually condense to form the knots that are the seeds of new stars. These knots attract more dust and gas due to gravity until they eventually become dense enough to collapse into a hot core called a protostar.

Read more
Hubble captures a formation of galaxies neatly lined up
An interacting galaxy system known as Arp-Madore 2105-332, that lies about 200 million light-years from Earth in the constellation Microscopium.

Sometimes, Hubble or other telescopes will capture two or more galaxies that are in the process of merging -- called interacting galaxies. These huge collisions can warp one or both of the galaxies, twisting them into strange shapes. The results of such collisions can be catastrophic, with one of the galaxies being destroyed. Or they can be creative, with one larger galaxy being formed from the two merging galaxies.

However, sometimes galaxies that appear very close in images are not actually interacting. Sometimes, they merely appear to be close when seen from Earth, but they can actually be thousands of light-years apart. That's the case with a previous Hubble image showing two overlapping galaxies.

Read more