Skip to main content

The final, dying outbursts of an unstable star are captured by Hubble

Earlier this year, Hubble celebrated its 31st anniversary with a release of an image of the unstable star AG Carinae. Now, Hubble researchers have returned to this star to show it from two different views, complied from observations in 2020, 2014, and 1994.

This view of AG Carinae showcases the details of the ionised hydrogen and ionised nitrogen emissions from the nebula (seen here in red).
This view of AG Carinae showcases the details of the ionized hydrogen and ionized nitrogen emissions from the nebula (seen here in red). ESA/Hubble and NASA, A. Nota, C. Britt

The first view of the star shows the ionized hydrogen and nitrogen which it emits, and which form a shell around the hot core. This shell is expanding over time as gases are thrown off.

In this image of AG Carinae, the blue demonstrates the contrasting appearance of the distribution of the dust that shines of reflected stellar light.
In this image of AG Carinae, the blue demonstrates the contrasting appearance of the distribution of the dust that shines of reflected stellar light. ESA/Hubble and NASA, A. Nota, C. Britt

The second view of the star shows how dust is distributed around the star, which is represented in blue. This dust shines brightly because it reflects the light given off by the star, and it is shaped by stellar winds which are coming from the star as well.

Recommended Videos

The star’s dramatic appearance is because it is very massive and coming to the end of its life. As it ages and uses up all of its fuel, the star becomes unstable and throws off both dust and gases.

“AG Carinae is formally classified as a Luminous Blue Variable because it is a hot (emitting blue light), brilliant star that varies in brightness,” the Hubble scientists explain. “Such stars are quite rare because few are so massive. Luminous Blue Variable stars continuously lose mass in the final stages of life. The star is waging a tug-of-war between gravity and radiation pressure to avoid self-destruction. As the star begins to run out of fuel, its radiation pressure decreases, and gravity begins to take hold. Stellar material succumbs to gravity and falls inward. It heats up and is explosively ejected into the surrounding interstellar space. This process continues until enough mass is lost and the star reaches a stable state.”

Gases are being thrown off the star at a tremendous speed of 43 miles per second, and its beautiful shell is formed from previous ejections. The shell of material that forms the nebula is around 10,000 years old and is approximately five light-years across.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See the stunning cosmic clouds captured in new Hubble image
This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.

This gorgeous new image from the Hubble Space Telescope shows something once considered little more than an annoyance: cosmic dust. For many years, astronomers thought of dust as a problem which blocked out important objects from view, but in recent decades they have learned about dust's importance in forming stars and planets, and even making new molecules in space.

The image shows clouds of dust and gas located near the Tarantula Nebula, a place also renowned for its beauty. It is part of a satellite galaxy of the Milky Way called the Large Magellanic Cloud, located 160,000 light-years away and a hotbed of star formation.

Read more
Watch this surreal aurora footage captured from the space station
An aurora as seen from the space station 250 miles above Earth.

One of the highlights for astronauts who spend time aboard the International Space Station (ISS) is the chance to enjoy breathtaking aurora from some 250 miles above Earth.

The space station’s X account has just shared some stunning footage showing an aurora captured by a camera on the ISS as it traveled over Canada, from west to east.

Read more
Hubble spots a cosmic bullseye: a galaxy with nine rings
LEDA 1313424, aptly nicknamed the Bullseye, is two and a half times the size of our Milky Way and has nine rings — six more than any other known galaxy. High-resolution imagery from NASA’s Hubble Space Telescope confirmed eight rings, and data from the W. M. Keck Observatory in Hawaii confirmed a ninth. Hubble and Keck also confirmed which galaxy dove through the Bullseye, creating these rings: the blue dwarf galaxy that sits to its immediate center-left.

The Hubble Space Telescope has captured this striking image of an unusual galaxy with a bullseye structure, as nine rings surround its central point. Technically known as LEDA 1313424, the galaxy has more rings than any other known galaxy, and studying it is helping astronomers to learn how galaxies like this are created.

Along with the W. M. Keck Observatory in Hawai'i, astronomers used Hubble to see that there was not just one ring around this galaxy but many. "This was a serendipitous discovery," said lead researcher Imad Pashaof Yale University. "I was looking at a ground-based imaging survey and when I saw a galaxy with several clear rings, I was immediately drawn to it. I had to stop to investigate it."

Read more