Skip to main content

Hubble spots a wacky exoplanet with yellow skies and iron rain

Astronomers have spotted an utterly bizarre exoplanet using data from the Hubble Space Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the Magellan observatory. WASP-79b, located 780 light-years away, has skies which would look yellow during the day.

The sky on Earth appears blue due to a phenomenon called Rayleigh scattering, in which tiny particles in the atmosphere filter out certain wavelengths of light. The shorter (blue) wavelengths of light are scattered more than longer (red) wavelengths, which is why the sky appears blue.

But there’s something odd going on on planet WASP-79b, because it doesn’t seem to show Rayleigh scattering in the way that scientists expected. When studying the planet using a spectrograph, which measures light wavelengths to determine chemical compositions, the scientists expected to see a decrease in the amount of blue starlight. But instead, they saw the opposite — the blue light wavelengths were less scattered by the atmosphere.

“This is a strong indication of an unknown atmospheric process that we’re just not accounting for in our physical models,'” Kristin Showalter Sotzen of the Johns Hopkins University Applied Physics Laboratory said in a statement. “I’ve shown the WASP-79b spectrum to a number of colleagues, and their consensus is ‘that’s weird’.”

An artist's illustration of the super-hot exoplanet WASP-79b
An artist’s illustration of the super-hot exoplanet WASP-79b, located 780 light-years away. NASA, ESA, and L. Hustak (STScI)

That means that the planet would have a yellow-colored sky during the day, and the researchers have no idea why. “Because this is the first time we’ve see this, we’re really not sure what the cause is,” Sotzen said.

“We need to keep an eye out for other planets like this because it could be indicative of unknown atmospheric processes that we don’t currently understand. Because we only have one planet as an example we don’t know if it’s an atmospheric phenomenon linked to the evolution of the planet.”

And the skies aren’t the only extreme thing about this planet. As a “hot Jupiter,” the planet orbits extremely close to its star, completing an orbit in just three and a half Earth days. That means its atmosphere is phenomenally hot, reaching up to 3,000 degrees Fahrenheit, which is hot enough to cause molten iron to rain down onto the surface from manganese sulfide or silicate clouds.

As well as being a quirky object of interest, astronomers think that studying this planet could help them learn about how planets form, because it has an unusual polar orbit around its star which brings into question theories about how hot Jupiters develop. It will be one of the first targets of study for NASA’s upcoming James Webb Space Telescope.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more