Skip to main content

Hubble captures an image of the stunning star-forming Prawn Nebula

When you look to the stars, you might expect to see a planet, a star, or even the International Space Station, but this week’s Hubble image shows something rather unexpected: A Prawn. The image shows the beautiful Prawn Nebula, located around 6,000 light-years away in the tail portion of the constellation Scorpius.

Despite the nebula’s large size, spanning over 250 light-years, it is rarely imaged as it is very dim, emitting only a small amount of light. The stars which can be seen appear to be a blue-white color, but in addition to this most of the stars within the nebula emit light in other portions of the spectrum that are invisible to the human eye. Hubble images in both the visible light wavelength and the infrared, allowing it to see more details of the beautiful swirls of dust and gas.

Hubble image of a small section of the Prawn Nebula in both visible and invisible infrared light, capturing dazzling detail of the nebula’s structure.
The Prawn Nebula is a massive stellar nursery located in the constellation Scorpius, about 6,000 light-years from Earth. Though the nebula stretches 250 light-years and covers a space four times the size of the full moon, it emits light primarily in wavelengths the human eye cannot detect, making it extremely faint to earthbound viewers. NASA, ESA, and J. Tan (Chalmers University of Technology); Processing; Gladys Kober (NASA/Catholic University of America)

“The Prawn Nebula, also known as IC 4628, is an emission nebula, which means its gas has been energized, or ionized, by the radiation of nearby stars,” Hubble scientists explain. “The radiation from these massive stars strips electrons from the nebula’s hydrogen atoms. As the energized electrons revert from their higher-energy state to a lower-energy state by recombining with hydrogen nuclei, they emit energy in the form of light, causing the nebula’s gas to glow. In this image, red indicates the presence of ionized iron (Fe II) emission.”

The nebula is a busy star-forming region, creating both individual stars and clusters of stars. In between these points of light are voids or cavities, which are created when hot stars give off stellar winds which blow away matter like dust and gas.

To show the nebula in its full context, the Hubble scientists also released this image of the full nebula, showing where this particular zoom-in image fits into the whole:

Star map showing location of the Prawn Nebula.
The Prawn Nebula lies south of the star Antares in the constellation Scorpius, the Scorpion. Hubble’s focused view captures just a small portion of the vast star-forming region. NASA, ESA, J. Tan (Chalmers University of Technology), and ESO; Processing; Gladys Kober (NASA/Catholic University of America)
Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble catches a baby star pulsating in a triple star system
This NASA Hubble Space Telescope image captures a triple-star star system.

This NASA Hubble Space Telescope image shows a triple-star star system. NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

A gorgeous new image from the Hubble Space Telescope shows a triple star system, where three stars are working in tandem to create a reflection nebula. The trio of stars are located 550 light-years away, and include one particular star, HP Tau, that is like a younger version of our sun and will eventually grow up to be a similar hydrogen-fueled star in millions of years' time.

Read more
Stunning images of Jupiter’s moon Europa show it has a floating icy shell
Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. The images show the fractures, ridges, and bands that crisscross the moon’s surface.

This image of Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on September 29, 2022. The image shows the fractures, ridges, and bands that crisscross the moon’s surface. Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Björn Jónsson (CC BY 3.0)

NASA's Juno mission is busy studying not only the planet of Jupiter, with its strange weather and strong magnetic field, but also several of its icy moons ,including the intriguing Europa. Often a top target of habitability research, Europa is exciting as a potential host for life because it is thought to have a liquid water ocean -- although this ocean is beneath an icy crust up to 15 miles thick. Juno has taken high-definition photos of Europa's surface, and scientists have recently analyzed this data to identify fractures and other features running across the icy shell.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more