Skip to main content

Seasonal variations are making flying on Mars harder for helicopter Ingenuity

With summer coming to an end across the northern hemisphere, many of us are getting ready for a chilly winter. But it’s not only us humans on Earth who are at the mercy of the seasons: NASA’s Ingenuity helicopter is also facing challenges from the changing seasons on Mars.

Mars’s atmosphere is very thin at the best of times, being just over 1% of the density of the atmosphere on Earth. That presents a challenge for a vehicle that keeps itself off the ground by moving air. Ingenuity was built to be extremely light to handle this, as well as having large rotor blades. But the changing Mars seasons means that soon the atmospheric density will drop even lower, which could be a challenge for the plucky helicopter.

An image acquired by NASA's Ingenuity Mars Helicopter using its navigation camera during its 13th flight on Sep. 5, 2021.
NASA’s Ingenuity Mars Helicopter acquired this image using its navigation camera during its 13th flight on September 5, 2021 (Sol 193 of the Perseverance rover mission) at the local mean solar time of 12:06:30. NASA/JPL-Caltech

Ingenuity has been something of a victim of its own success, as it was originally only designed for a mission of five flights. It has now well surpassed that, recently making its thirteenth flight – with the flights becoming longer and more complex as well. But its extended lifespan means it has to contend with more difficult conditions on Mars.

Recommended Videos

“When we designed and tested Ingenuity on Earth, we expected Ingenuity’s five-flight mission to be completed within the first few months after Perseverance’s landing in February 2021. We therefore prepared for flights at atmospheric densities between 0.0145 and 0.0185 kg/m3, which is equivalent to 1.2-1.5% of Earth’s atmospheric density at sea level,” Håvard Grip, Ingenuity Mars Helicopter Chief Pilot, wrote in a mission update.

“With Ingenuity in its sixth month of operation, however, we have entered a season where the densities in Jezero Crater are dropping to even lower levels. In the coming months, we may see densities as low as 0.012 kg/m3 (1.0% of Earth’s density) during the afternoon hours that are preferable for flight. The difference may seem small, but it has a significant impact on Ingenuity’s ability to fly.”

The Ingenuity team does have a plan to address this issue if the atmospheric density does drop to low levels by spinning the helicopter’s rotors faster than ever before to enable it to keep flying. However, such a move is risky as it involves spinning the rotors even faster than has been done with helicopters tested on Earth. The higher speeds could create significant aerodynamic drag or even create resonances that could shake the helicopter and damage its hardware, not to mention the requirement for more power and higher loads.

To ease into these more demanding rotor speeds, the team will try out a high-speed spin test with a 10% increase in peak rotor speed, and if that goes well then the fourteenth test flight will use a higher rotor speed to see how the helicopter handles it. Hopefully, Ingenuity will be able to continue exploring Mars and gathering data, even with all the challenges of the Martian environment.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA orbiter captures one last image of retired InSight lander on Mars
This illustration shows NASA's InSight spacecraft with its instruments deployed on the Martian surface.

NASA's Insight lander spent four years on the surface of Mars, uncovering secrets of the planet's interior, but it eventually succumbed to the most martian of environmental threats: dust. Mars has periodic dust storms that can whip up into huge global events, lifting dust up into the air and then dumping it on everything in sight -- including solar panels. After years of accumulation, eventually the dust was so thick that Insight's solar panels could no longer generate enough power to keep it operational, and the mission officially came to an end in December 2022.

That wasn't quite the end of the story for InSight, though, as it is still being used for science to this day, albeit indirectly. Recently, the Mars Reconnaissance Orbiter (MRO) caught a glimpse of InSight from orbit, capturing the lander's dusty surroundings and showing how even more dust had built up on it.

Read more
NASA’s Mars rover just emerged from Jezero Crater. So, what next?
Perseverance's view from the rim of Mars' Jezero Crater

NASA personnel are celebrating the news that its Perseverance rover has finally reached the top of the Mars’ Jezero Crater rim after a challenging climb that took three-and-a-half months to complete.

The six-wheeled rover ascended 1,640 feet (500 meters) and made stops along the way to conduct various science observations as it continues its search for signs of ancient microbial life on the red planet.

Read more
NASA learns how the Ingenuity helicopter ended up crashing on Mars
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).

Earlier this year, the NASA helicopter Ingenuity came to the end of its mission after an incredible 72 flights on Mars. The helicopter flew a remarkable 30 times farther than planned, and was the first rotocopter to fly on another planet, proving that exploring distant worlds from the air is possible. Now, NASA has revealed new details about what exactly caused the crash that brought the mission to an end, and what it learned about flying helicopters for future missions.

The final flight of Ingenuity took place on January 18, 2024, when the helicopter rose briefly into the air in a maneuver called a hop. The helicopter was fitted with a number of cameras, and shadows cast onto the planet's surface revealed that one of the helicopter's rotor blades was missing, having apparently separated at the mast. But it wasn't certain what had caused this damage.

Read more