Skip to main content

James Webb captures image of the most distant star ever discovered

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered. Discovered by Hubble in 2020, the star named Earendel is located an astonishing 28 billion light-years away. While in the previous Hubble image, the star was only visible as a small blob, these new observations from Webb are detailed enough to reveal information about the star like its type and information about the galaxy in which it resides.

The Webb image shows a galaxy cluster called WHL0137-08, which is so massive that it bends spacetime and acts like a magnifying glass for the more distant galaxies behind it. Some of these distant galaxies being magnified include one called the Sunrise Arc, which hosts Earendel. The Sunrise Arc is located near the end of one of the spikes from the bright central star, at around the five o’clock position. A zoomed-in version of the image shows the Arc and Earendel within t.

This image from NASA’s James Webb Space Telescope of a massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected. The star, nicknamed Earendel, was first discovered by the Hubble Space Telescope. Follow-up observations using Webb’s NIRCam (Near-Infrared Camera) reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.
This image from NASA’s James Webb Space Telescope of a massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected. The star, nicknamed Earendel, was first discovered by the Hubble Space Telescope. Follow-up observations using Webb’s NIRCam (Near-Infrared Camera) reveal the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous. Image: NASA, ESA, CSA; Science: Dan Coe (STScI/AURA for ESA, JHU), Brian Welch (NASA-GSFC, UMD); Image Processing: Zolt G. Levay

Due to this magnification effect, called gravitational lensing, Earendel is magnified by an amazing factor of 4,000. As the star is so distant, we are seeing it as it was an extremely long time ago due to the amount of time it takes light to travel the great distance. The star is thought to be from 1 billion years after the big bang, so studying it can help us learn about some of the early stars.

One surprise to the researchers is that there are indications that Earendel may have a companion star, cooler and redder than it is, although it’s hard to be sure because the light from the possibly two stars blurs together. But scientists can tell some information about Earendel with more certainty, such as that it is a type called a massive B-type star, and that it is more than twice as hot as our sun and around a million times more luminous.

The data was collected using Webb’s NIRCam camera instrument, but the researchers took observations of the region using Webb’s NIRSpec spectroscopy instrument as well. They are now analyzing these data too and hope to learn about the host galaxy’s composition and more exact figures for its distance from Earth.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more
James Webb image shows the majesty of the most massive known galaxy cluster
Webb’s infrared image of the galaxy cluster El Gordo (“the Fat One”) reveals hundreds of galaxies, some never before seen at this level of detail. El Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. Two of the most prominent features in the image include the Thin One, located just below and left of the image center, and the Fishhook, a red swoosh at upper right. Both are lensed background galaxies.

A recent image from the James Webb Space Telescope shows the most massive galaxy cluster we know of -- one so large that it is nicknamed El Gordo, or the fat one. Thought to have a mass of over 2 quadrillion times the mass of the sun, the cluster is located 7 billion light-years away and hosts hundreds of galaxies that are gravitationally bound together.

The image was taken using Webb's NIRCam instrument, which was able to capture the most detailed look yet at this enormous cluster and the many galaxies within it.

Read more