Skip to main content

See how James Webb instruments work together to create stunning views of space

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 — and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements — i.e., everything which isn’t hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

The irregular galaxy NGC 6822.
This image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. As their names suggest, NIRCam and MIRI probe different parts of the electromagnetic spectrum. This allows the instruments to observe different components of the same galaxy, with MIRI especially sensitive to its gas-rich regions (the yellow swirls in this image) and NIRCam suitable for observing its densely packed field of stars. ESA/Webb, NASA & CSA, M. Meixner

This image from Webb combines data from two of its instruments, the Near-InfraRed Camera (NIRCam) and the Mid-InfraRed Instrument (MIRI), to show off features like the clouds of dust (shown in yellow) and areas of active star formation (seen in red).

Recommended Videos

To understand how scientists build up images like this out of different observations, Webb researchers also released the individual views taken by NIRCam and MIRI. Because the two instruments look in different parts of the spectrum — NIRCam in the near-infrared and MIRI in the mid-infrared — they can pick out different features. When the two views are combined, they show even more detail than one view could alone.

The irregular galaxy NGC 6822.
This image shows the irregular galaxy NGC 6822, as observed by the Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. MIRI probes the mid-infrared, which in this case makes it perfectly suited to observe the dense regions of gas that suffuse this galaxy. ESA/Webb, NASA & CSA, M. Meixner

This is the MIRI image, which highlights regions of dust that are more noticeable in the mid-infrared. The cooler areas of dust are in blue, while warmer dust clouds are seen in orange. And the different colors can help pick out different galaxies too, with nearby galaxies appearing green and more distant galaxies seen in orange. There is even a bright orange ring shape near the center bottom which is the remnant of a supernova.

This scaled image shows the irregular galaxy NGC 6822.
This scaled image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) mounted on the NASA/ESA/CSA James Webb Space Telescope. ESA/Webb, NASA & CSA, M. Meixner

This is the NIRCam image, which picks out the thousands of stars visible to Webb which are hard to see in the MIRI image. In this wavelength, NIRCam can peer through the dust and see the stars which would otherwise be hidden, with the brightest stars glowing in blue and fainter stars in red.

Please enable Javascript to view this content

If you’d like to see a slider comparison of the MIRI and NIRCam images, that is also available on the Webb website.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more