James Webb detects water vapor in rocky planet’s atmosphere — maybe

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn’t an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet’s host star. Researchers are working through the data and hope to use another of Webb’s instruments to make the final call.

This artist’s concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself and not from the planet at all. ILLUSTRATION: NASA, ESA, CSA, Joseph Olmsted (STScI), Leah Hustak (STScI)

The planet GJ 486 b is rocky, a bit larger than Earth, and more massive, so it would have heavier gravity than we experience. And the star it orbits is quite different from our sun, as it is a type called a red dwarf, which is a dim, cool star that is approaching the end of its life. The planet is close enough to the star, orbiting in just 1.5 days, that its surface temperature would be around 800 degrees Fahrenheit, so it isn’t in the habitable zone where liquid water can exist on the surface.

Recommended Videos

However, Webb’s NIRSpec instrument detected water vapor, which could mean that the planet does have an atmosphere even though it’s so close to its star.

“We see a signal and it’s almost certainly due to water. But we can’t tell yet if that water is part of the planet’s atmosphere, meaning the planet has an atmosphere, or if we’re just seeing a water signature coming from the star,” explained Sarah Moran of the University of Arizona, lead author of the research, in a statement.

The reason that the star could be the source of the water vapor is that there are cool spots on the star’s surface, similar to the sunspots seen on our sun. The cool areas around these regions are more likely to collect water vapor compared to the hot regions around them, so there could be enough water vapor to give a signal to Webb’s instrument.

Finding water in the atmosphere of this rocky planet would be exciting since astronomers haven’t seen this before, and it could help to find habitable exoplanets in the future. But to be sure of the source of the water vapor, the researchers need to make more measurements using Webb’s NIRISS and MIRI instruments.

“Water vapor in an atmosphere on a hot rocky planet would represent a major breakthrough for exoplanet science,” said fellow researcher Kevin Stevenson of the Johns Hopkins University Applied Physics Laboratory. “But we must be careful and make sure that the star is not the culprit.”

The research will be published in The Astrophysical Journal Letters.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See 19 gorgeous face-on spiral galaxies in new James Webb data

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more