James Webb Space Telescope has gone cold, but that’s good

Almost four months after launch, the James Webb Space Telescope has just taken a big step toward making its first observations of deep space.

The $10 billion mission — a joint effort involving NASA, the European Space Agency, and the Canadian Space Agency — is on a quest to find out more about the origins of the universe while at the same time searching for distant planets that may support life.

Recommended Videos

This week the mission team at NASA’s Jet Propulsion Laboratory (JPL) confirmed that the Webb telescope had dropped to the required temperature to allow observation work to begin.

A critical part of the telescope, the Mid-Infrared Instrument (MIRI), recently reached its final operating temperature below 7 kelvins (minus 447 degrees Fahrenheit, or minus 266 degrees Celsius).

JPL said that along with the telescope’s other other instruments, MIRI started cooling down in the shade of Webb’s large sunshield, dropping to around 90 kelvins (minus 298 F, or minus 183 C).

However, it said that dropping to less than 7 kelvins required an electrically powered “cryocooler” device to get it past the so-called “pinch point” when the instrument goes from 15 kelvins (minus 433 F, or minus 258 C) to 6.4 kelvins (minus 448 F, or minus 267 C).

“The MIRI cooler team has poured a lot of hard work into developing the procedure for the pinch point,” Analyn Schneider, project manager for MIRI, said on Wednesday. “The team was both excited and nervous going into the critical activity. In the end, it was a textbook execution of the procedure, and the cooler performance is even better than expected.”

The low temperature is vital as Webb’s instruments detect infrared light, which “distant galaxies, stars hidden in cocoons of dust, and planets outside our solar system” all emit.

Components on the Webb telescope, if too warm, would also emit infrared light, making it hard for scientists to understand the gathered data, so cooling them down solves this issue.

Cooling the telescope also suppresses something called “dark current,” an electric current created by the vibration of atoms in the Webb’s detectors that could also confuse the telescope as to where a light source is coming from.

“We spent years practicing for that moment, running through the commands and the checks that we did on MIRI,” said MIRI project scientist Mike Ressler. “It was kind of like a movie script: Everything we were supposed to do was written down and rehearsed. When the test data rolled in, I was ecstatic to see it looked exactly as expected and that we have a healthy instrument.”

The Webb team will now take test images of celestial objects in deep space to calibrate the telescope’s instruments and check that everything is working as it should. Assuming everything goes to plan, we should be seeing the first images from the project this summer.

The James Webb Telescope is the most powerful space-based observatory ever built and its work will complement that of the Hubble telescope that’s been exploring deep space for more than 30 years.

Editors' Recommendations

Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb Space Telescope celebrated on new stamps

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more
SpaceX has set a new date for Axiom-3 crewed rocket launch

The Falcon 9 rocket that will carry the Axiom 3 crew to space. SpaceX

NASA’s third private launch to the International Space Station (ISS) has been moved from Wednesday to Thursday to give SpaceX more time to complete pre-launch checkouts and data analysis on the Falcon 9 rocket and Crew Dragon capsule.

Read more
James Webb captures a unique view of Uranus’s ring system

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more