Juno spacecraft peers into the strange atmosphere of Jupiter

Cyclones at Jupiter's South Pole

Jupiter may be renowned as our solar system’s most beautiful planet, but there are still plenty of things we don’t understand about what makes this stunning place tick. One long-standing mystery is about the temperature of its atmosphere, which turns out to be much denser and hotter than was expected in certain places.

Recommended Videos

Now, data from NASA’s Juno probe has been used to uncover more information about how atmospheric hot spots spread and interact with the rest of the atmosphere.

“Giant planets have deep atmospheres without a solid or liquid base like Earth,” explained Scott Bolton, principal investigator of Juno at the Southwest Research Institute in San Antonio, in a statement. “To better understand what is happening deep into one of these worlds, you need to look below the cloud layer. Juno, which recently completed its 29th close-up science pass of Jupiter, does just that. The spacecraft’s observations are shedding light on old mysteries and posing new questions — not only about Jupiter, but about all gas giant worlds.”

The data suggests that there are hot spot regions in the atmosphere, but that these are not small, isolated pockets as previously thought. Instead, they are “windows” peeking into large swaths of the atmosphere that are hotter and drier than other areas, like one such dry area which seems to cover the entire northern equatorial belt of the planet. These spots are associated with breaks in the clouds which allow researchers to peer into the deeper layers of the atmosphere below.

This illustration uses data obtained by NASA’s Juno mission to depict high-altitude electrical storms on Jupiter. Juno’s sensitive Stellar Reference Unit camera detected unusual lightning flashes on Jupiter’s dark side during the spacecraft’s close flybys of the planet. NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Heidi N. Becker/Koji Kuramura

It is also these hot regions that may power the exotic lightning and slushy mushballs found in Jupiter’s atmosphere.

“High up in the atmosphere, where shallow lightning is seen, water and ammonia are combined and become invisible to Juno’s microwave instrument. This is where a special kind of hailstone that we call ‘mushballs’ are forming,” said Tristan Guillot, a Juno co-investigator at the Université Côte d’Azur in Nice, France, in the statement. “These mushballs get heavy and fall deep into the atmosphere, creating a large region that is depleted of both ammonia and water. Once the mushballs melt and evaporate, the ammonia and water change back to a gaseous state and are visible to Juno again.”

The Juno mission will continue to orbit Jupiter for a planned 37 orbits of the planet, collecting more data as it goes. It can help peel back the layers of this extraordinary place to learn more about its complex atmosphere and what lies beneath.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the dramatic, volcanic moon Io in new Juno images

NASA's Juno spacecraft recently made a close flyby of the solar system's most volcanic body, the Jovian moon of Io. During the flyby, the spacecraft came within 1,000 miles of Io, which is the closest any craft has come to the moon within the last 20 years.

During its flyby, the spacecraft snapped images using its JunoCam instrument, and some of those images are now publicly available.

Read more
NASA’s Juno spacecraft to pass within 1,000 miles of volcanic moon Io

NASA's Juno spacecraft, currently in orbit around Jupiter, will soon be making a close flyby of one of the planet's most dramatic moons, Io. On Saturday, December 30, Juno will come within 1,000 miles of Io, making it the closest spacecraft to that moon in the last 20 years.

Io is an intriguing place because it shows signs of significant volcanic activity, making it the most geologically active body in the solar system. It hosts over 400 active volcanoes, which periodically erupt due to hot magma inside the moon created by friction caused by the gravitational pull between Jupiter and its other large moons.

Read more
Hubble captures a stunning ultraviolet image of Jupiter

You can now see Jupiter in a whole new way, thanks to a new image from the Hubble Space Telescope. Showing the planet in the ultraviolet wavelength, the image highlights the planet's Great Red Spot -- an enormous storm larger than the width of the entire Earth that has been raging for hundreds of years.

The image was released in celebration of Jupiter reaching opposition, meaning it is directly opposite the sun as viewed from the Earth. That means that if you are a keen stargazer, now is a great time to go and look for Jupiter in the night sky as it will look its biggest and brightest.

Read more