Skip to main content

Beautiful images show the stripes of Jupiter in three different wavelengths

If you think Jupiter is beautiful in the visible light spectrum, wait until you see it in infrared and ultraviolet. Three new images of the planet have been released by the National Science Foundation’s NOIRLab, showing the planet in all its beauty in various wavelengths.

The visible light image of Jupiter (directly below), captured by the Wide Field Camera 3 on the Hubble Space Telescope, will be the most familiar. The image shows the details of the bands around the planet, formed by rotating clouds which are endlessly swirling and changing. You can also see the famous Great Red Spot in the lower half of the image to the left, which is the result of the largest storm in the solar system. The storm is over 10,000 miles wide and has wind speeds of up to 268 mph.

Recommended Videos

In the upper half of the image, you can also see a long, slim brown feature called a brown barge, a type of weather formation that stretches nearly 45,000 miles across the planet.

This visible-light image of Jupiter was created from data captured on 11 January 2017 using the Wide Field Camera 3 on the Hubble Space Telescope.
This visible-light image of Jupiter was created from data captured on January 11, 2017, using the Wide Field Camera 3 on the Hubble Space Telescope. NASA/ESA/NOIRLab/NSF/AURA/M.H. Wong and I. de Pater (UC Berkeley) et al. Acknowledgments: M. Zamani

In the infrared view of Jupiter (directly below), captured by the Gemini North telescope in Hawaii, you can see warmer areas of the planet indicated in brighter colors. There are four notable hot spots just above the equator, while in this wavelength the Great Red Spot appears dark because of its clouds.

This infrared view of Jupiter was created from data captured on 11 January 2017 with the Near-InfraRed Imager (NIRI) instrument at Gemini North in Hawaiʻi, the northern member of the international Gemini Observatory, a Program of NSF’s NOIRLab. It is actually a mosaic of individual frames that were combined to produce a global portrait of the planet.
This infrared view of Jupiter was created from data captured on January 11, 2017, with the Near-InfraRed Imager (NIRI) instrument at Gemini North in Hawaii, the northern member of the international Gemini Observatory, a Program of the National Science Foundation’s NOIRLab. It is actually a mosaic of individual frames that were combined to produce a global portrait of the planet. International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong (UC Berkeley) et al. Acknowledgments: M. Zamani

Finally, the stunning ultraviolet image directly below was also captured by Hubble. In this image, the Great Red Spot is dark but clearly visible. The infrared and visible light images pick up on the molecules that give the spot its distinctive color, called chromophores, and absorb blue and ultraviolet light.

This ultraviolet image of Jupiter was created from data captured on 11 January 2017 using the Wide Field Camera 3 on the Hubble Space Telescope.
This ultraviolet image of Jupiter was created from data captured on January 11, 2017, using the Wide Field Camera 3 on the Hubble Space Telescope. NASA/ESA/NOIRLab/NSF/AURA/M.H. Wong and I. de Pater (UC Berkeley) et al. Acknowledgments: M. Zamani

By comparing these three images, scientists are able to examine features they might miss if they looked in only one wavelength. They can also compare features across wavelengths, as all three images were captured at the same time, on January 11, 2017.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Celebrate Hubble’s 34th birthday with this gorgeous nebula image
In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. The name 'Little Dumbbell' comes from its shape that is a two-lobed structure of colorful, mottled, glowing gases resembling a balloon that’s been pinched around a middle waist. Like an inflating balloon, the lobes are expanding into space from a dying star seen as a white dot in the center. Blistering ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen.

Tomorrow, April 24, marks the 34th anniversary of the launch of the Hubble Space Telescope. For more than three decades, this venerable old telescope has been peering out into space, observing stars, galaxies, and nebulae to understand more about the universe we live in. To celebrate this birthday, Hubble scientists have shared a new image showing the striking Little Dumbbell Nebula, also known as Messier 76, which is located 3,400 light-years away.

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. NASA, ESA, STScI

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Hubble images the spooky Spider Galaxy
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.

This week's image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

Read more