Skip to main content

Issue with rocket could delay the launch of James Webb Space Telescope

An Ariane 5 rocket sits on the launch pad in November 2015. Arianespace

The James Webb Space Telescope might be nearly ready to be sent into space, but an issue with its launch vehicle could see the launch delayed from its October date.

Recommended Videos

The telescope is to be launched using an Ariane 5 rocket, a French launch vehicle which has historically been highly reliable. However, the company that makes the Ariane 5, Arianespace, confirmed to SpaceNews that there were issues with the separation of the fairing on two recent launches of the rocket. The fairing is the nose cone that protects the payloads inside the rocket from the extreme heat and pressure experienced during a launch. Fairings are typically constructed of two halves, which split apart once the rocket has reached high enough altitude that the extra protection is no longer required. They then fall away from the rocket.

According to the European Space Agency, the Ariane 5’s fairing, which measures over 5 meters in diameter, is “split by two pyrotechnical commands and jettisoned more than 3 minutes after liftoff, at an altitude above 100 km [62 miles].”

Arianespace did not give further details on what exactly the issue with the fairing separation was, although the affected launches were successful and the payloads were not damaged. But given how expensive and delicate the James Webb telescope is, any potential issue is a cause for concern.

“We have decided to conduct a set of additional checks with [Aerospace engineering company] RUAG and ArianeGroup to ensure the best level of quality and reliability; the progress of these investigations remains positive,” Arianespace told SpaceNews.

The aim is for the telescope to launch on an Ariane 5 in October this year, though some experts think that this date may now need to be delayed. There are two scheduled Ariane 5 launches between now and then, so these could provide more information about the state of the rocket.

The good news is that, unlike other missions, like those to Mars, the telescope does not need to launch at a particular time. A Mars mission has a strict launch window because Mars and Earth are only near to each other once every two years, so if a mission misses its window — like the European and Russian ExoMars mission did last summer due to coronavirus — it must be delayed by two whole years. But the telescope will be launched into a solar orbit, at what is called a Lagrange point. This is an orbit that is stable between the sun and the Earth, essentially allowing the telescope to be “parked,” so the launch can go ahead at any time.

However, the launch date for telescope has been pushed back multiple times, and delaying it further could add to frustrations with the pace of the project.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more