Skip to main content

Detecting organic salts on Mars is key to finding evidence of life there

This look back at a dune that NASA's Curiosity Mars rover drove across was taken by the rover's Mast Camera (Mastcam) on Feb. 9, 2014, or the 538th Martian day, or sol, of Curiosity's mission.
This look back at a dune that NASA’s Curiosity Mars rover drove across was taken by the rover’s Mast Camera (Mastcam) on Feb. 9, 2014, or the 538th Martian day, or sol, of Curiosity’s mission. NASA/JPL-Caltech/MSSS

NASA’s Perseverance rover is currently exploring Mars and looking for evidence of the most tantalizing of propositions: That there could once have been life on the red planet. But it’s not as simple a flipping open a tricorder to scan for life signs. Detecting whether there ever was life there is a matter of careful, painstaking research.

One key area of research is looking for what are called organic compounds, which contain carbon along with other key elements like hydrogen, oxygen, and nitrogen. These compounds are the basis for living organisms via the carbon cycle, so identifying them on Mars is an important indicator that there could at least potentially have been life there.

The Curiosity rover found indications of organic salts on Mars in 2018, giving support to the idea Mars was potentially habitable once. However, although Curiosity’s instruments can give indications of organic compounds, they cannot give direct evidence of their existence, and definitely locating organic compounds gives an important indication of where to conduct future research.

“If we determine that there are organic salts concentrated anywhere on Mars, we’ll want to investigate those regions further, and ideally drill deeper below the surface where organic matter could be better preserved,” said James M. T. Lewis, an organic geochemist who led the research.

Lewis’s team gathered data from all of Curiosity’s instruments and puts it together to search for more direct evidence. The team recreated the conditions in Curiosity’s Sample Analysis at Mars (SAM) instrument, which uses an oven to heat samples to very high temperatures and detect what molecules are released. They then looked to see what happened to organic salts when exposed to these conditions. They found that their results matched what was found by Curiosity, supporting the idea that Curiosity really did detect organic compounds back in 2018.

“We’re trying to unravel billions of years of organic chemistry,” Lewis said, “and in that organic record there could be the ultimate prize: Evidence that life once existed on the red planet.”

The findings are published in the Journal of Geophysical Research.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA has lost communication with the Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

The Mars helicopter Ingenuity has had a remarkable lifespan and has proven to be a greater success than anyone imagined. Originally designed to perform just five flights over the surface of Mars, the helicopter has now performed more than 70. However, NASA has now announced that it has lost contact with the helicopter, though it's unclear how serious this problem is.

The helicopter was performing its 72nd flight, which was an adjustment and correction to a previous flight that was cut short. Flight 71 was intended to be a journey of 1,175 feet (358 meters), but when the helicopter made this flight earlier in the month, it traveled just a third of that. The problem was related to its downward-facing camera, which uses surface indications for autonomous navigation. The helicopter was traveling over a particularly featureless expanse of the surface, and the lack of landmarks appeared to cause a problem with its navigation, forcing the flight to end early.

Read more
See the passing of a day on Mars with the Curiosity rover
Curiosity rover

While many of us are on vacation this week between Christmas and New Year, the Curiosity rover on Mars is getting back to work after taking time off last month. In November, NASA's Mars missions paused for two weeks during an event called the Mars solar conjunction, when the sun is directly between Earth and Mars.

That means that any communications signals passing between the two planets would have to pass close to the harsh solar environment, where they would likely be degraded. To avoid any risk of garbled communications sending dangerous signals to the rovers, NASA stopped sending commands to both its Curiosity and Perseverance rovers until the solar conjunction passed.

Read more
Key ingredient for life found at Saturn’s icy moon Enceladus
Water from the subsurface ocean of Saturn’s moon Enceladus sprays from huge fissures out into space.

When scientists search for places beyond Earth that could potentially host life, they don't only consider far-off exoplanets. They are also interested in locations right here in our solar system -- and some of the most promising locations are not planets but moons. Saturn's icy moon Enceladus, for example, is thought to host a saltwater ocean beneath a thick icy crust, making it a potential location where life could exist.

Recently, researchers have found a key ingredient for life in the plumes of water that spew from Enceladus's surface. By analyzing data from the Cassini mission, they not only identified hydrogen cyanide but also found that the moon has a source of chemical energy that could fuel life as well.

Read more