James Webb Space Telescope powers on its instruments in Ground Segment Test

NASA’s upcoming James Webb Space Telescope has run into its share of problems during its development process, but now it has reached a milestone with the completion of the “Ground Segment Test.”

This test involved sending commands to power on the scientific instruments aboard the James Webb for the first time, ensuring that ground control personnel at NASA will be able to control the telescope once it is in orbit.

Recommended Videos

“This was the first time we have done this with both the actual Webb flight hardware and ground system,” Amanda Arvai, deputy division head of mission operations at the Space Telescope Science Institute (STScI) in Maryland said in a statement.

“We’ve performed pieces of this test as the observatory was being assembled, but this is the first ever, and fully successful, end-to-end operation of the observatory and ground segment. This is a big milestone for the project, and very rewarding to see Webb working as expected.”

Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff. NASA/Chris Gunn

The test required over 100 people, most working remotely, and took four days. It consisted of turning on, moving, and operating the telescope’s four instruments: The Near-Infrared Camera, the Near-Infrared Spectrograph, the Mid-Infrared Instrument, and the Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph.

“This was also the first time we’ve demonstrated the complete cycle for conducting observations with the observatory’s science instruments,” Arvai said.

“This cycle starts with the creation of an observation plan by the ground system which is uplinked to the observatory by the Flight Operations Team. Webb’s science instruments then performed the observations and the data was transmitted back to the Mission Operations Center in Baltimore, where the science was processed and distributed to scientists.”

The engineers wanted to simulate the communications conditions of the telescope being in space and being controlled from the ground, so they sent the commands via NASA’s Deep Space Network. Once the telescope is in orbit, commands will be relayed using the network which has locations in California, Spain, and Australia to ensure that communication with space-based instruments can continue as the Earth rotates.

Testing of the James Webb will continue with acoustic and sine-vibration testing which simulate the challenging conditions of a launch, and the launch itself is scheduled for October 31, 2021.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a unique view of Uranus’s ring system

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more