Skip to main content

Trace Gas Orbiter finds a canyon on Mars ‘packed full’ of water ice

Billions of years ago, Mars used to have plentiful liquid water on its surface and may even have once looked like Earth. But today, it is dry and arid with almost no liquid water accessible — which is a challenge for sending a potential crewed mission there one day. But a recent study has revealed plentiful water beneath the Martian surface in the Valles Marineris canyon system.

Perspective view of Candor Chasma.
Mars Express took snapshots of Candor Chasma, a valley in the northern part of Valles Marineris, as it was in orbit above the region on 6 July 2006. ESA/DLR/FU Berlin (G. Neukum)

The water was spotted by the European Space Agency’s Trace Gas Orbiter using its FREND (Fine Resolution Epithermal Neutron Detector) instrument. While previous studies have found water ice on Mars, especially around its poles and below the surface, there is little easily accessible water in the mid-latitude regions. Hence why this discovery is so important.

“With TGO we can look down to one meter below this dusty layer and see what’s really going on below Mars’ surface — and, crucially, locate water-rich ‘oases’ that couldn’t be detected with previous instruments,” said Igor Mitrofanov, lead author of the new study, in a statement. “FREND revealed an area with an unusually large amount of hydrogen in the colossal Valles Marineris canyon system: assuming the hydrogen we see is bound into water molecules, as much as 40% of the near-surface material in this region appears to be water.”

The canyon system, which is located near to the equator, has been found to be “packed full” of water, which could potentially be either ice or bound to other minerals in the soil — though the researchers think that ice is the most likely possibility. In either case, it could be a huge potential resource for future Mars explorers to make use of.

In addition, gathering more knowledge about current conditions on Mars can help researchers to understand more about the planet’s history as well.

“Knowing more about how and where water exists on present-day Mars is essential to understand what happened to Mars’ once-abundant water, and helps our search for habitable environments, possible signs of past life, and organic materials from Mars’ earliest days,” says Colin Wilson, ESA’s ExoMars Trace Gas Orbiter project scientist, in the statement.

Editors' Recommendations