Skip to main content

Trace Gas Orbiter finds a canyon on Mars ‘packed full’ of water ice

Billions of years ago, Mars used to have plentiful liquid water on its surface and may even have once looked like Earth. But today, it is dry and arid with almost no liquid water accessible — which is a challenge for sending a potential crewed mission there one day. But a recent study has revealed plentiful water beneath the Martian surface in the Valles Marineris canyon system.

Perspective view of Candor Chasma.
Mars Express took snapshots of Candor Chasma, a valley in the northern part of Valles Marineris, as it was in orbit above the region on 6 July 2006. ESA/DLR/FU Berlin (G. Neukum)

The water was spotted by the European Space Agency’s Trace Gas Orbiter using its FREND (Fine Resolution Epithermal Neutron Detector) instrument. While previous studies have found water ice on Mars, especially around its poles and below the surface, there is little easily accessible water in the mid-latitude regions. Hence why this discovery is so important.

“With TGO we can look down to one meter below this dusty layer and see what’s really going on below Mars’ surface — and, crucially, locate water-rich ‘oases’ that couldn’t be detected with previous instruments,” said Igor Mitrofanov, lead author of the new study, in a statement. “FREND revealed an area with an unusually large amount of hydrogen in the colossal Valles Marineris canyon system: assuming the hydrogen we see is bound into water molecules, as much as 40% of the near-surface material in this region appears to be water.”

The canyon system, which is located near to the equator, has been found to be “packed full” of water, which could potentially be either ice or bound to other minerals in the soil — though the researchers think that ice is the most likely possibility. In either case, it could be a huge potential resource for future Mars explorers to make use of.

In addition, gathering more knowledge about current conditions on Mars can help researchers to understand more about the planet’s history as well.

“Knowing more about how and where water exists on present-day Mars is essential to understand what happened to Mars’ once-abundant water, and helps our search for habitable environments, possible signs of past life, and organic materials from Mars’ earliest days,” says Colin Wilson, ESA’s ExoMars Trace Gas Orbiter project scientist, in the statement.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Final communications sent to the beloved Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

Earlier this year, the beloved Mars helicopter Ingenuity ended its mission after an incredible 72 flights. Originally designed as a technology test intended to perform just five flights, NASA's helicopter was the first rotorcraft to fly on another planet and was such a success that it has already inspired plans for more exploration of distant planets using rotorcraft. Its mission came to an end, however, when it damaged one of its rotors, leaving it unable to safely fly.

Even then, the helicopter was still able to communicate by sending signals to the nearby Perseverance rover, which acted as its base station. Now, though, Perseverance is traveling away from the helicopter to continue its exploration of Mars. So this week, the NASA team on the ground met for the last time to communicate with Ingenuity, bringing the mission to a final close.

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
NASA is looking for volunteers for yearlong simulated Mars mission
The CHAPEA mission 1 crew (from left: Nathan Jones, Ross Brockwell, Kelly Haston, Anca Selariu) exit a prototype of a pressurized rover and make their way to the CHAPEA facility ahead of their entry into the habitat on June 25, 2023.

If you've ever wanted to visit Mars, then NASA has an offer for you. Though the agency isn't sending humans to the red planet quite yet, it is preparing for a future crewed Mars mission by creating a simulated mission here on Earth -- and it's looking for volunteers.

Simulated missions look at people's psychological and health responses to conditions similar to what astronauts would experience on a deep space mission. In the case of the Mars mission, called Crew Health and Performance Exploration Analog or CHAPEA, the aim is to simulate a Martian environment using a 3D-printed habitat and a set of Mars-related tasks that crew members must perform.

Read more