Skip to main content

Ultima Thule’s peculiar shape is a puzzle for scientists

Ultima Thule, the farthest object ever explored, has yet more mysteries to reveal. Forget the debates about whether it is looks most like a snowman or more like Star Wars‘ BB-8 — NASA scientists have revealed that it is even more oddly shaped than previously thought.

A sequence of 14 images taken by New Horizons has been processed and strung together to show the shape and movement of this strange object. The central frame of the image was captured on January 1, 2019 during the New Year’s Day flyby:

The Truly Odd Shape of Ultima Thule

It’s hard to see in the video, but scientists have been able to work out more about the object’s shape by looking at the way that it blocks out the stars behind it as it passes by. The researchers have found that the object does indeed have two lobes as thought, but neither lobe is spherical. The larger lobe, called Ultima, is more of a “pancake” shape, while the smaller lobe, Thule, is more like a “dented walnut.” However, there is still some degree of uncertainty over what the exact shape of the object is because parts of it were hidden from view and were not illuminated by the light from the Sun.

In the image below, you can see a comparison of the previous model of the object and the new updated model, with blue dashed lines representing areas of uncertainty where the object could be flatter than or more curved than the current image shows:

Scientists’ understanding of Ultima Thule has changed as they review additional data. The “old view” in this illustration is based on images taken within a day of New Horizons’ closest approach to the Kuiper Belt object on Jan. 1, 2019. The bottom view is the team’s current best shape model for Ultima Thule, but still carries some uncertainty as an entire region was essentially hidden from view, and not illuminated by the Sun, during the New Horizons flyby. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

The new data raises new questions, however, such as how the object developed this peculiar shape. “We had an impression of Ultima Thule based on the limited number of images returned in the days around the flyby, but seeing more data has significantly changed our view,” Principal Investigator Alan Stern, of Southwest Research Institute, said in a statement. “It would be closer to reality to say Ultima Thule’s shape is flatter, like a pancake. But more importantly, the new images are creating scientific puzzles about how such an object could even be formed. We’ve never seen something like this orbiting the Sun.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
NASA selects 9 companies to work on low-cost Mars projects
This mosaic is made up of more than 100 images captured by NASA’s Viking 1 orbiter, which operated around Mars from 1976 to 1980. The scar across the center of the planet is the vast Valles Marineris canyon system.

NASA is expanding its plans for Mars, looking at not only a big, high-budget, long-term project to bring back a sample from Mars but also smaller, lower-cost missions to enable exploration of the red planet. The agency recently announced it has selected nine private companies that will perform a total of 12 studies into small-scale projects for enabling Mars science.

The companies include big names in aerospace like Lockheed Martin and United Launch Services, but also smaller companies like Redwire Space and Astrobotic, which recently landed on the surface of the moon. Each project will get a 12-week study to be completed this summer, with NASA looking at the results to see if it will incorporate any of the ideas into its future Mars exploration plans.

Read more
Japanese satellite chases down space junk
Image of a piece of space debris seen from Astroscale's ADRAS-J satellite.

There's a growing problem of junk cluttering up the space beyond our planet. Known as space debris, it consists of broken satellites, discarded rocket parts, and other tiny pieces of metal and other materials that move around the planet, often at extremely high speeds. Space debris has threatened the International Space Station and impacted China's space station, and junk from space has even fallen onto a house in the U.S. recently.

Many scientists have called for greater environmental protections of space, but how to deal with all the existing debris is an open problem. Much of the debris is hard to capture because it is oddly shaped or traveling at great speed. Cleanup suggestions have involved using magnets, or nets, or lasers. But now a system from Japanese company Astroscale has taken an up-close image of a piece of space debris it has been chasing down, and it could help make future cleanup easier.

Read more