Astronomers spot cyclones at Uranus’ pole for the first time

Even at almost 2 billion miles away from the sun, Uranus is still affected by changing seasons and weather just like Earth. On Uranus, though, each season is an epic 21 years long because of its distance from the sun. That makes it an intriguing place to study weather conditions, and recent research by NASA has observed a polar cyclone there.

As the planet is tipped over on its side, its poles aren’t always facing in the right direction to be seen from Earth. But since 2015, astronomers have been able to observe the poles, and to peer into the atmosphere to see what is happening there.

NASA scientists used microwave observations to spot the first polar cyclone on Uranus, seen here as a light-colored dot to the right of center in each image of the planet. From left, the images use wavelength bands K, Ka, and Q. To highlight cyclone features, a different color map was used for each. NASA/JPL-Caltech/VLA

While Uranus is usually portrayed as a generally featureless blue ball, when seen using radio telescopes, the pole reveals a swirling cyclone. “These observations tell us a lot more about the story of Uranus. It’s a much more dynamic world than you might think,” said lead author Alex Akins of NASA’s Jet Propulsion Laboratory in a statement. “It isn’t just a plain blue ball of gas. There’s a lot happening under the hood.”

Recommended Videos

To study the planet, the researchers used the Very Large Array, which is a group of ground-based dishes that work together to act like one large telescope. Using observations from 2015, 2021, and 2022, the researchers were able to see how the atmosphere changed over time. The cyclone occurs due to the movement of warm gas through the atmosphere, which can start to rotate and form a swirl that moves in the same direction as the rotation of the planet.

Researchers saw spinning of the methane clouds at Uranus’ southern pole after the Voyager 2 mission passed by there in the 1980s. But they aren’t sure whether the newly observed cyclone with its core of warm air is the same phenomenon.

“Does the warm core we observed represent the same high-speed circulation seen by Voyager?” Akins asked. “Or are there stacked cyclones in Uranus’ atmosphere? The fact that we’re still finding out such simple things about how Uranus’ atmosphere works really gets me excited to find out more about this mysterious planet.”

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See incredible time lapses of two of space’s most famous objects

Most objects in space, such as stars, have a lifecycle stretching over hundreds of thousands of years or more, so it's rare to see objects in the sky that look significantly different over a short period like a few years unless there's a dramatic transient event like a supernova. However, that's not to say that objects are static: Objects such as nebulae can be in flux, and, when observed closely, can be seen changing over time.

Quick Look: NASA's Chandra Releases Doubleheader of Blockbuster Hits

Read more
Starliner spacecraft just took a major step toward first crewed flight

A crane lifts the Starliner spacecraft to the top of an Atlas V rocket. Boeing Space

Boeing’s CST-100 Starliner spacecraft has been stacked atop the United Launch Alliance (ULA) Atlas V rocket ahead of its first crewed flight next month.

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more