Skip to main content

Hubble sees the changing seasons on Jupiter and Uranus

Our planet isn’t the only place in the solar system with dramatic weather changes. Other planets in the solar system also experience seasons, depending on their distance from the sun, and that affects their climates. One of the many jobs of the Hubble Space Telescope is to monitor the changing seasons on other planets, particularly the larger outer planets which aren’t so often observed. And this week, scientist have released their newest views of Jupiter and Uranus, taken by Hubble and showing seasonal changes on the two planets.

Jupiter is far from the sun, so most of its heat comes not from outside but from within. Jupiter is thought to have a very high core temperature, which may be a result of how it was formed but could also be topped up by processes inside the planet. As this heat escapes from the planet’s interior, it affects its atmosphere which contains multiple layers and has unusual features like geometric storms at its poles.

Jupiter and Uranus (not to scale).
[Jupiter: left] – The forecast for Jupiter is for stormy weather at low northern latitudes. A prominent string of alternating storms is visible, forming a ‘vortex street’ as some planetary astronomers call it.[Uranus: right] – Uranus’s north pole shows a thickened photochemical haze that looks similar to the smog over cities. Several little storms can be seen near the edge of the polar haze boundary.Note: The planets do not appear in this image to scale. NASA, ESA, STScI, A. Simon (NASA-GSFC), M. H. Wong (UC Berkeley), J. DePasquale (STScI)
In the recent Hubble image, Jupiter is experiencing storms across the part of the northern hemisphere near the equator, with a wave-like formation of cyclones and anticyclones crossing the planet. In the image you can also see the moon Io as a small orange circle, casting a black shadow toward the left of the planet.

As for Uranus, the image beautifully captures the planet’s rings and the white haze over the planet’s pole. Uranus is unusual in that it is tipped almost entirely over so it orbits on its side, unlike Earth and most other planets which orbit upright. That’s why the polar haze can be seen on the right-hand side of the planet.

The haze is thought to come from the polar cap, the appearance of which changes dramatically over the seasons. Astronomers are still learning about how this cap changes over time, and it is thought that it will get even brighter as the northern pole will be aimed toward Earth during the planet’s northern summer solstice in 2028.

If you head to the ESA Hubble website you can also see side-by-side comparisons of Jupiter in November 2022 and January 2023, and Uranus in November 2014 and November 2022, showing how the planets change in appearance over time.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more