See Webb’s most beautiful image yet of the Pillars of Creation

One of the most famous space images of all time is the Hubble Space Telescope’s image of the Pillars of Creation, originally taken in 1995 and revisited in 2014. This stunning structure of dust and gas is located in the Eagle Nebula and is remarkable both for its beauty and for the dynamic process of star formation going on within its clouds.

Earlier this year, the James Webb Space Telescope took its own images of this natural wonder, capturing images in both the near-infrared and mid-infrared wavelengths. Now, both of Webb’s images have been combined into one, showing a gorgeous new view of the famous structure.

By combining images of the iconic Pillars of Creation from two cameras aboard the NASA/ESA/CSA James Webb Space Telescope, the Universe has been framed in its infrared glory. Webb’s near-infrared image was fused with its mid-infrared image, setting this star-forming region ablaze with new details. NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI), A. M. Koekemoer (STScI)

This image combines data from Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). The near-infrared range shows up features like the many stars in the background and the newly forming stars which are visible as orange dots around the pillars of dust, while the mid-infrared range shows the layers of dust which are displayed in colors ranging from orange to indigo depending on their density.

Recommended Videos

Combining images taken at different wavelengths like this allows an image to display features that would otherwise be invisible. In Webb’s mid-infrared image of the pillars, for example, very few stars are visible, while the near-infrared can’t penetrate the deep layers of dust to show such detail.

The pillars’ dust makes them such a busy region of star formation, as new stars are created when dust forms into knots which gradually attract more material until they collapse under their own gravity and become protostars. More and more material is drawn into these cores, getting hot and hotter due to friction, until eventually, the protostar reaches a sufficiently high core temperature that it begins fusing hydrogen into helium, radiating out heat and light and becoming a main sequence star.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more
James Webb captures a unique view of Uranus’s ring system

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more