Skip to main content

James Webb spots huge plumes of water from Saturn’s moon Enceladus

One of the prime places that scientists are interested in looking for life in our solar system is Saturn’s icy moon Enceladus. The moon has an ocean of liquid water beneath a thick, icy crust that could potentially support life. Interest in this subsurface ocean was heightened when the Cassini mission was studying Enceladus in the 2000s and flew through plumes of water spraying from the surface,

Now, the James Webb Space Telescope has been used to observe these plumes all the way from Earth, helping scientists to learn about the water system on this moon. The plumes come from Enceladus’s south pole, and Webb was able to spot them even though the entire moon is just over 300 miles across. Despite that small size, the plume Webb observed spanned more than 6,000 miles.

Saturn’s geologically active moon, Enceladus. NASA/JPL

“When I was looking at the data, at first, I was thinking I had to be wrong. It was just so shocking to detect a water plume more than 20 times the size of the moon,” said lead author of the research, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement. “The water plume extends far beyond its release region at the southern pole.”

Recommended Videos

As well as being long, the plume was also throwing up water at a fast rate, with vapor gushing away from the surface at a rate of  nearly 80 gallons per second — which, NASA points out, could fill an Olympic-sized swimming pool in a couple of hours.

This amount of water is affecting the environment around Saturn, as the moon is leaving a trail of water as it orbits. “The orbit of Enceladus around Saturn is relatively quick, just 33 hours. As it whips around Saturn, the moon and its jets are basically spitting off water, leaving a halo, almost like a donut, in its wake,” said Villanueva. “In the Webb observations, not only was the plume huge, but there was just water absolutely everywhere.”

NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialised instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. Enceladus, a prime candidate in the search for life elsewhere in our Solar System, is a small moon about four percent the size of Earth. New images from Webb’s NIRCam (Near-Infrared Camera) have revealed a water vapour plume jetting from the south pole of Enceladus, extending out 40 times the size of the moon itself. The Integral Field Unit (IFU) aboard the NIRSpec (Near-Infrared Spectrograph) instrument also provided insights into how the water from Enceladus feeds the rest of its surrounding environment.
NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialized instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. NASA, ESA, CSA, STScI, L. Hustak (STScI), G. Villanueva (NASA’s Goddard Space Flight Center)

The researchers used Webb’s NIRCam (Near-Infrared Camera) instrument to take pictures of the plume, and also its NIRSpec (Near-Infrared Spectrograph) instrument to identify the water coming from and surrounding the moon.

“Right now, Webb provides a unique way to directly measure how water evolves and changes over time across Enceladus’ immense plume, and as we see here, we will even make new discoveries and learn more about the composition of the underlying ocean,” said co-author Stefanie Milam of NASA Goddard. “Because of Webb’s wavelength coverage and sensitivity, and what we’ve learned from previous missions, we have an entire new window of opportunity in front of us.”

The research is available as a pre-print and will soon be published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more