Skip to main content

Avatar IRL? Scientists crack the code to bioengineering plants that glow

Image used with permission by copyright holder

In Avatar, James Cameron’s 2009 science-fiction epic, the resource-rich world of Pandora is covered in tropical rainforests, all glowing with luscious phosphorescence like some kind of underwater paradise. According to a Wired article published at the time of the movie’s release, Cameron hired a plant sciences specialist from the University of California, Riverside. The specialist spent weeks writing detailed scientific explanations for the dozens of flora on Pandora, explaining exactly how their alien bioluminescence works. After all, no such thing exists on our planet. Right?

Hold that thought. Because a team of international researchers this month announced that they have created plants that produce a visible, glowing green luminescence. The results could potentially be used for everything from better studying the inner workings of plants to producing aesthetically interesting flower displays for rave-inspired weddings. It’s probably too early to write to your city council to suggest swapping out street lighting for glowing trees, but it’s not entirely out of the question either!

Recommended Videos

“There are many possible applications of this technology,” Keith Wood, CEO of Light Bio, the company that could one day bring this work to market, told Digital Trends. “Most notably [it could] allow scientists to observe the living processes occurring within plants, and to allow the general public to experience the internal living energy within [these same] plants. Specifically, we are referring to the possibility of house plants and flowers that glow in the dark.”

Not mushroom for glowing

The light-emitting plants were developed by inserting bioluminescent DNA from a mushroom into a tobacco plant. Tobacco plants were used because of their simple genetics and rapid growth, although other plants could be utilized in the future. Feasibility has already been shown with plants including periwinkle, petunia, and rose. Plants that contain the mushroom DNA glow continuously throughout their lifespan (not just at night), all the way from seedling through to mature plant.

The project was carried out by researchers at Moscow biotech company Planta, working with the Institute of Bioorganic Chemistry of the Russian Academy of Sciences, MRC London Institute of Medical Sciences, and the Institute of Science and Technology Austria, and others. Light Bio is the company spun out to bring these luminescent plants to market in ornamental house plants, in partnership with Planta.

“Bioluminescence is one of the most fascinating and diverse phenomena found in nature,” Wood explained. “Many scientists worldwide are working to better understand the underlying foundations for these living lights. They also recognize that these have many practical and aesthetic applications.”

The work was led by Dr. Ilia Yampolsky, who discovered the biochemical basis for bioluminescence in mushrooms. The unique insight was not just discovering the natural bioluminescence found in some mushrooms, but also that it was unexpectedly compatible with the basic metabolism common to all plants. Through collaboration, the researchers formulated their hypothesis that glowing plants may be a real feasible possibility.

Image used with permission by copyright holder

This is not the first time that researchers have explored bioluminescence in plants. In 1985, Light Bio’s founder Wood was harnessing the underlying chemistry and molecular biology responsible for the firefly’s glow to create glowing plants (again, of the tobacco variety) by inserting the relevant DNA. Since then, researchers have continued to explore the concept every few years. In 2017, for instance, Massachusetts Institute of Technology researchers were able to get an otherwise ordinary watercress plant to emit a dim light for a period of 3.5 hours by embedding specialized nanoparticles into its leaves.

Through a leaf brightly

The problem with all of these attempts? That the resulting plants simply were not that bright. This is what the new work, published in a recent paper in the journal Nature Biotechnology corrects. As its authors write:

“Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.”

According to the researchers, the plants can reportedly produce more than a billion photons per minute. That’s enough that the results should be clearly visible. And it should be entirely possible to use the same technique to make future plants glow even brighter. It might even be feasible to integrate features like changing levels of brightness as a direct response to a plant’s surroundings. Or for the colors to cycle accordingly.

Smart home lights that change their brightness or hue depending on what you’re doing are commonplace now. But a plant that does the same thing? That’s sure to start a conversation or two at your next house party. (When such things are once again possible.) Where do we place our pre-orders?

Topics
Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
PayPal vs. Venmo vs. Cash App vs. Apple Cash: which app should you use?
PayPal, Venmo, Cash App, and Apple Wallet apps on an iPhone.

We’re getting closer every day to an entirely cashless society. While some folks may still carry around a few bucks for emergencies, electronic payments are accepted nearly everywhere, and as mobile wallets expand, even traditional credit and debit cards are starting to fall by the wayside.

That means many of us are past the days of tossing a few bills onto the table to pay our share of a restaurant tab or slipping our pal a couple of bucks to help them out. Now, even those things are more easily doable from our smartphones than our physical wallets.

Read more
How to change margins in Google Docs
Laptop Working from Home

When you create a document in Google Docs, you may need to adjust the space between the edge of the page and the content --- the margins. For instance, many professors have requirements for the margin sizes you must use for college papers.

You can easily change the left, right, top, and bottom margins in Google Docs and have a few different ways to do it.

Read more
What is Microsoft Teams? How to use the collaboration app
A close-up of someone using Microsoft Teams on a laptop for a videoconference.

Online team collaboration is the new norm as companies spread their workforce across the globe. Gone are the days of primarily relying on group emails, as teams can now work together in real time using an instant chat-style interface, no matter where they are.

Using Microsoft Teams affords video conferencing, real-time discussions, document sharing and editing, and more for companies and corporations. It's one of many collaboration tools designed to bring company workers together in an online space. It’s not designed for communicating with family and friends, but for colleagues and clients.

Read more