Skip to main content

Graphene-embedded nanomaterial filters filthy water into drinking water

graphene filter water biofoam
Washington University in St. Louis
The wonder material graphene has been celebrated for its strength, lightness, flexibility, and versatility of applications. Last year, a Massachusetts Institute of Technology study suggested that graphene could bring infrared night vision to everyday devices such as laptops and smartphones. In April, scientists at the Max-Planck Institute of Intelligent Systems designed graphene-based, remote-controlled nanobots to suck up lead contamination in water.

Last month, researchers at Washington University in St. Louis published a paper detailing their development of a graphene oxide-based nanomaterial to effectively filter filthy water into drinking water.

Graphene oxide — an inexpensive, paper-like form of graphene — is well-known for its ability to absorb light and convert it to heat, making it ideal for tasks that involve harvesting sunlight, according to Srikanth Singamaneni, associate professor of mechanical engineering and materials science and the corresponding author of the paper.

Singamaneni and his team created a two-layered biofoam by combining bacteria-produced cellulose and graphene oxide. The bottom layer consists of a pure nanocellulose network. The top layer is composed of a nanocellulose fiber network that’s embedded with graphene oxide flakes.

“When this bilayered foam-like material is suspended on dirty water, water is [sucked up] by the pure cellulose layer at the bottom — just like a sponge — and brought to the top surface,” Singamaneni told Digital Trends.

“Light shining on the top surface is converted to heat by the graphene oxide, which causes water to evaporate. The process is highly efficient as the heat is not dissipated into the bulk water and confined to the surface where evaporation occurs. The resulting fresh water can be easily collected from the top of the foam.”

The researchers envisage their novel material being used to filter tons of water in developing countries that receive sufficient sunlight for the light-absorption-to-heat-conversion mechanism to occur. But, before that happens, they’ll have to scale the material up and run a few additional tests.

“The next step in this research is to integrate this novel material into a device that can condense and collect fresh water and demonstrate the whole process at a pilot scale,” Singamaneni said. “We are also optimizing the graphene oxide content and investigating other designs of hybrid material,” including their use to boost solar energy harvesting devices.

Editors' Recommendations

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Bacteria could help mass-produce wonder material graphene at scale
university exeter graphene optoelectronics

There’s no doubting that graphene, a single layer of graphite with the atoms arranged in a honeycomb hexagonal pattern, is one of science’s most versatile new materials. Capable of doing everything from filtering the color out of whisky to creating body armor that’s stronger than diamonds, graphene exhibits some truly unique qualities. However, while some mainstream uses of graphene have emerged, its use remains limited due to the challenge of producing it at scale. The most common way to make graphene still involves using sticky tape to strip a layer of atoms off ordinary graphite.

That’s something that researchers from the University of Rochester and the Netherlands’ Delft University of Technology have been working to change. They’ve figured out a way to mass produce graphene by mixing oxidized graphite with bacteria. Their method is cost-efficient, time-efficient, and sustainable -- and may just make graphene a whole lot more available in the process.

Read more
Eruption of ice volcano threw liquid water over the frozen surface of Pluto
new horizons spacecraft pluto2

Liquid water could once have existed on the frozen surface of Pluto, put there by the violent eruption of a cryovolcano, according to a new study.

“This was a huge surprise to all of us about Pluto,” planetary scientist Dale Cruikshank of the NASA Ames Research Center and an author of the paper told Science News. “It means there are lots of surprises waiting to be uncovered in that part of the solar system.”

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more