Skip to main content

NASA is funding research on deep sleep for transporting astronauts to Mars

Prometheus
Science fiction has long depicted suspended animation as a means for humans to achieve travel deep into space – and NASA is coming around to the idea. (Image: Prometheus/Twentieth Century Fox) Image used with permission by copyright holder
Putting space travelers into a state of deep sleep has been a staple of interstellar science fiction for quite some time, but despite originating as a far-fetched concept, the idea of using suspended animation to enable deep space travel might soon become science fact.

If you’re unfamiliar with the concept, here’s a quick rundown. Traveling far into space is a tricky endeavor. With existing technology, traveling to a planet like Mars takes about 180 days, for example. Keeping a crew of people alive (and entertained) in space for that long isn’t hard, but it does require a lot of food, water, energy, and other supplies. This makes manned long-distance space travel extremely expensive, since hauling more supplies requires huge amounts of storage space, and thousands of additional dollars just to get it all that stuff into orbit.

In theory, suspended animation would help solve this problem. If astronauts could be placed in a deep sleep during the journey, they would require far fewer resources along the way. Instead, they could just be put to sleep at the beginning and woken back up when they arrive at their destination.

torpor
Image used with permission by copyright holder

Now, with a manned mission to Mars likely in its sights, NASA has begun to explore the viability of such an idea, and has recently funded a study by Atlanta-based aerospace engineering firm SpaceWorks Enterprises to help work out the kinks in the process.

RelatedCryostasis isn’t sci-fi: surgeons will soon use suspended animation to revive gunshot victims

The bulk of the study revolves around placing humans in torpor — a state in which metabolic and physiological activity is drastically slowed down. To do this, the company has developed a three-stage system. Step one involves sedating the person and using a neuromuscular blockade to prevent movement, whereas step two is to physically lower the person’s body temperature by about 10 degrees farenheit, thereby reducing cellular activity and metabolic rate by around 50 to 70 percent. This is achieved with the help of cooling pads and a nasally-inhaled coolant that lowers the subject’s temperature from the inside out. Then, once in torpor, the subject is hooked into an intravenous drip that supplies their body with all the nutrients needed to keep them alive.

Using these methods, SpaceWorks has reportedly managed to keep a person in stasis for a week — an impressive feat, but even so, there’s still much work to be done before the technology is ready for primetime. In addition to extending the length of the stasis period, the company has a handful of other hurdles to overcome. The potential onset of pneumonia, muscle atrophy, and bone loss have yet to be addressed; and the long term-effects of stasis on human organs is still largely unknown. SpaceWorks still has a long road ahead of it, but with a few more years of research, it’s not unreasonable to think that suspended animation, cryostasis, torpor –whatever you want to call it– might finally bring a manned mission to Mars within reach.

Editors' Recommendations

Drew Prindle
Former Digital Trends Contributor
Drew Prindle is an award-winning writer, editor, and storyteller who currently serves as Senior Features Editor for Digital…
NASA astronauts will try to grow plants on the moon
An artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface.

An artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface. NASA

It was almost a decade ago when astronauts aboard the International Space Station sat down for a meal of historical significance as it was the first to include food -- albeit only lettuce -- grown and harvested in space.

Read more
NASA and Boeing start fueling Starliner spacecraft for first crewed flight
Engineers fuel Boeing's Starliner spacecraft.

Engineers fuel Boeing's Starliner spacecraft. Boeing Space

After numerous delays, NASA and Boeing look more certain than ever to launch the first crewed flight of the CST-100 Starliner spacecraft in May.

Read more
NASA’s Crew-7 astronauts splash down safely off the coast of Florida
Roscosmos cosmonaut Konstantin Borisov, left, ESA (European Space Agency) astronaut Andreas Mogensen, NASA astronaut Jasmin Moghbeli, and Japan Aerospace Exploration Agency (JAXA) astronaut Satoshi Furukawa are seen inside the SpaceX Dragon Endurance spacecraft onboard the SpaceX recovery ship MEGAN shortly after having landed in the Gulf of Mexico off the coast of Pensacola, Florida, Tuesday, March 12, 2024. Moghbeli, Mogensen, Furukawa, and Borisov are returning after nearly six-months in space as part of Expedition 70 aboard the International Space Station.

NASA's Crew-7 mission has splashed down without incident off the coast of Florida, with the four astronauts on board returning safely from the International Space Station (ISS). The crew spent a total of 199 days orbiting the Earth and are now headed to NASA’s Johnson Space Center in Houston to rest and recover.

The crew traveled in a SpaceX Dragon capsule that undocked from the ISS on Monday, March 11, and splashed down at 5:47 a.m. ET on Tuesday, March 12. The group arrived at the station in late August 2023, and spent their time in orbit performing research and maintenance tasks.

Read more